]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Reformat table.
[hpcc2014.git] / hpcc.tex
index 29d00a12b6988e8e5291c2f29a9b6d550054f356..67609d7ff0ebbba0f7472ba6403f0bd5b0a0ae7d 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -135,6 +135,7 @@ iterative  asynchronous algorithms  to solve  a given  problem on  a large-scale
 simulated environment challenges to  find optimal configurations giving the best
 results with a lowest residual error and in the best of execution time.
 
+
 To our knowledge,  there is no existing work on the  large-scale simulation of a
 real  AIAC application.   {\bf  The contribution  of  the present  paper can  be
   summarised  in two  main  points}.  First  we  give a  first  approach of  the
@@ -167,28 +168,35 @@ based  on GMRES to  solve each  block obtained  of the  splitting. This  code is
 written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
 MPI) is  detailed in the next  section. At last, the  simulation results carried
 out will be presented before some concluding remarks and future works.
+
  
 \section{Motivations and scientific context}
 
-As exposed in the introduction, parallel iterative methods are now widely used in many scientific domains. They can be
-classified in three main classes depending on how iterations and communications are managed (for more details readers
-can refer to~\cite{bcvc06:ij}). In the \textit{Synchronous Iterations~-- Synchronous Communications (SISC)} model data
-are exchanged at the end of each iteration. All the processors must begin the same iteration at the same time and
-important idle times on processors are generated. The \textit{Synchronous Iterations~-- Asynchronous Communications
-(SIAC)} model can be compared to the previous one except that data required on another processor are sent asynchronously
-i.e.  without stopping current computations. This technique allows to partially overlap communications by computations
-but unfortunately, the overlapping is only partial and important idle times remain.  It is clear that, in a grid
-computing context, where the number of computational nodes is large, heterogeneous and widely distributed, the idle
-times generated by synchronizations are very penalizing. One way to overcome this problem is to use the
-\textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model. Here, local computations do not need to
-wait for required data. Processors can then perform their iterations with the data present at that time. Figure~\ref{fig:aiac}
-illustrates this model where the gray blocks represent the computation phases, the white spaces the idle
-times and the arrows the communications.
-\AG{There are no ``white spaces'' on the figure.}
-With this algorithmic model, the number of iterations required before the
-convergence is generally greater than for the two former classes. But, and as detailed in~\cite{bcvc06:ij}, AIAC
-algorithms can significantly reduce overall execution times by suppressing idle times due to synchronizations especially
-in a grid computing context.\LZK{Répétition par rapport à l'intro}
+As exposed in  the introduction, parallel iterative methods  are now widely used
+in  many  scientific domains.  They  can be  classified  in  three main  classes
+depending on  how iterations  and communications are  managed (for  more details
+readers can refer to~\cite{bcvc06:ij}). In the \textit{Synchronous Iterations~--
+  Synchronous Communications (SISC)} model data are exchanged at the end of each
+iteration. All the processors must begin the same iteration at the same time and
+important  idle  times  on  processors are  generated.  The  \textit{Synchronous
+  Iterations~-- Asynchronous Communications (SIAC)} model can be compared to the
+previous  one  except   that  data  required  on  another   processor  are  sent
+asynchronously  i.e.   without  stopping  current computations.  This  technique
+allows to  partially overlap  communications by computations  but unfortunately,
+the overlapping  is only partial and  important idle times remain.   It is clear
+that, in  a grid computing context,  where the number of  computational nodes is
+large,  heterogeneous  and  widely  distributed,  the idle  times  generated  by
+synchronizations are very penalizing. One way to overcome this problem is to use
+the  \textit{Asynchronous   Iterations~--  Asynchronous  Communications  (AIAC)}
+model.   Here,  local   computations  do   not   need  to   wait  for   required
+data. Processors can then perform their iterations with the data present at that
+time.  Figure~\ref{fig:aiac}  illustrates  this  model  where  the  gray  blocks
+represent the  computation phases.  With  this algorithmic model, the  number of
+iterations required before the convergence is generally greater than for the two
+former classes.  But, and as  detailed in~\cite{bcvc06:ij}, AIAC  algorithms can
+significantly reduce  overall execution times  by suppressing idle times  due to
+synchronizations  especially  in a  grid  computing context.
+%\LZK{Répétition  par  rapport à l'intro}
 
 \begin{figure}[!t]
   \centering
@@ -197,26 +205,38 @@ in a grid computing context.\LZK{Répétition par rapport à l'intro}
   \label{fig:aiac}
 \end{figure}
 
+\RC{Je serais partant de virer AIAC et laisser asynchronous algorithms... à voir}
+
+%% It is very challenging to develop efficient applications for large scale,
+%% heterogeneous and distributed platforms such as computing grids. Researchers and
+%% engineers have to develop techniques for maximizing application performance of
+%% these multi-cluster platforms, by redesigning the applications and/or by using
+%% novel algorithms that can account for the composite and heterogeneous nature of
+%% the platform. Unfortunately, the deployment of such applications on these very
+%% large scale systems is very costly, labor intensive and time consuming. In this
+%% context, it appears that the use of simulation tools to explore various platform
+%% scenarios at will and to run enormous numbers of experiments quickly can be very
+%% promising. Several works\dots{}
+
+%% \AG{Several works\dots{} what?\\
+%  Le paragraphe suivant se trouve déjà dans l'intro ?}
+In the context of asynchronous algorithms, the number of iterations to reach the
+convergence depends on  the delay of messages. With  synchronous iterations, the
+number of  iterations is exactly  the same than  in the sequential mode  (if the
+parallelization process does  not change the algorithm). So  the difficulty with
+asynchronous algorithms comes from the fact it is necessary to run the algorithm
+with real data. In fact, from an execution to another the order of messages will
+change and the  number of iterations to reach the  convergence will also change.
+According  to all  the parameters  of the  platform (number  of nodes,  power of
+nodes,  inter  and  intra clusrters  bandwith  and  latency,  ....) and  of  the
+algorithm  (number   of  splitting  with  the   multisplitting  algorithm),  the
+multisplitting code  will obtain the solution  more or less  quickly. Or course,
+the GMRES method also depends of the same parameters. As it is difficult to have
+access to  many clusters,  grids or supercomputers  with many  different network
+parameters,  it  is  interesting  to  be  able  to  simulate  the  behaviors  of
+asynchronous iterative algoritms before being able to runs real experiments.
 
-It is very challenging to develop efficient applications for large scale,
-heterogeneous and distributed platforms such as computing grids. Researchers and
-engineers have to develop techniques for maximizing application performance of
-these multi-cluster platforms, by redesigning the applications and/or by using
-novel algorithms that can account for the composite and heterogeneous nature of
-the platform. Unfortunately, the deployment of such applications on these very
-large scale systems is very costly, labor intensive and time consuming. In this
-context, it appears that the use of simulation tools to explore various platform
-scenarios at will and to run enormous numbers of experiments quickly can be very
-promising. Several works\dots{}
 
-\AG{Several works\dots{} what?\\
-  Le paragraphe suivant se trouve déjà dans l'intro ?}
-In the context of AIAC algorithms, the use of simulation tools is even more
-relevant. Indeed, this class of applications is very sensible to the execution
-environment context. For instance, variations in the network bandwidth (intra
-and inter-clusters), in the number and the power of nodes, in the number of
-clusters\dots{} can lead to very different number of iterations and so to very
-different execution times.
 
 
 
@@ -384,59 +404,8 @@ where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the
 tolerance threshold of the error computed between two successive local solution
 $X_\ell^k$ and $X_\ell^{k+1}$.
 
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
-debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous 
-mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
-and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
-\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async}
-Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
-As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, all declared 
-global variables have been moved to local variables for each subroutine. In fact, global variables generate side effects arising from the concurrent access of 
-shared memory used by threads simulating each computing unit in the SimGrid architecture. Second, the alignment of certain types of variables such as ``long int'' had
-also to be reviewed.
-\AG{À propos de ces problèmes d'alignement, en dire plus si ça a un intérêt, ou l'enlever.}
- Finally, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
-In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
-environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications. 
-
-
-
-\section{Experimental results}
-
-When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input
-parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this
-study that the results depend on the following parameters:  
-\begin{itemize}
-\item At the network level, we found that the most critical values are the
-  bandwidth and the network latency.
-\item Hosts power (GFlops) can also influence on the results.
-\item Finally, when submitting job batches for execution, the arguments values
-  passed to the program like the maximum number of iterations or the external
-  precision are critical. They allow to ensure not only the convergence of the
-  algorithm but also to get the main objective of the experimentation of the
-  simulation in having an execution time in asynchronous less than in
-  synchronous mode. The ratio between the execution time of asynchronous
-  compared to the synchronous mode is defined as the \emph{relative gain}. So,
-  our objective running the algorithm in SimGrid is to obtain a relative gain
-  greater than 1.
-  \AG{$t_\text{async} / t_\text{sync} > 1$, l'objectif est donc que ça dure plus
-    longtemps (que ça aille moins vite) en asynchrone qu'en synchrone ?
-    Ce n'est pas plutôt l'inverse ?}
-\end{itemize}
 
-A priori, obtaining a relative gain greater than 1 would be difficult in a local
-area network configuration where the synchronous mode will take advantage on the
-rapid exchange of information on such high-speed links. Thus, the methodology
-adopted was to launch the application on clustered network. In this last
-configuration, degrading the inter-cluster network performance will penalize the
-synchronous mode allowing to get a relative gain greater than 1.  This action
-simulates the case of distant clusters linked with long distance network like
-Internet.
 
-\AG{Cette partie sur le poisson 3D
-  % on sait donc que ce n'est pas une plie ou une sole (/me fatigué)
-  n'est pas à sa place.  Elle devrait être placée plus tôt.}
 In this paper, we solve the 3D Poisson problem whose the mathematical model is 
 \begin{equation}
 \left\{
@@ -469,14 +438,67 @@ The parallel solving of the 3D Poisson problem with our multisplitting method re
 \end{figure}
 
 
-As a first step, the algorithm was run on a network consisting of two clusters
-containing 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50} with a
-matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 171 elements or from
-$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{171}^\text{3} =
-\text{\np{5000211}}$ entries.
-\AG{Expliquer comment lire les tableaux.}
 
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous 
+mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
+and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
+\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} 
+\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.}
+Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
+As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, the scope of all declared 
+global variables have been moved to local to subroutine. Indeed, global variables generate side effects arising from the concurrent access of 
+shared memory used by threads simulating each computing unit in the SimGrid architecture. 
+%Second, the alignment of certain types of variables such as ``long int'' had also to be reviewed.
+\AG{À propos de ces problèmes d'alignement, en dire plus si ça a un intérêt, ou l'enlever.}
+\CER{Ce problème fait partie des modifications que j'ai dû faire dans l'adaptation du programme MPI vers SMPI. IL découle de la différence de la taille des mots en mémoire : en 32 bits, pour les variables declarees en long int, on garde dans les instructions de sortie (printf, sprintf, ...) le format \%lu sinon en 64 bits, on le substitue par \%llu. La phrase a été enlevé.} 
+Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
+In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
+environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications. 
+
+
+
+\section{Simulation results}
+
+When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input
+parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this
+study that the results depend on the following parameters:  
+\begin{itemize}
+\item At the network level, we found that the most critical values are the
+  bandwidth and the network latency.
+\item Hosts processors power (GFlops) can also influence on the results.
+\item Finally, when submitting job batches for execution, the arguments values
+  passed to the program like the maximum number of iterations or the precision are critical. They allow us to ensure not only the convergence of the
+  algorithm but also to get the main objective in getting an execution time in asynchronous communication less than in
+  synchronous mode. The ratio between the execution time of synchronous
+  compared to the asynchronous mode ($t_\text{sync} / t_\text{async}$) is defined as the \emph{relative gain}. So,
+  our objective running the algorithm in SimGrid is to obtain a relative gain
+  greater than 1.
+  \AG{$t_\text{async} / t_\text{sync} > 1$, l'objectif est donc que ça dure plus
+    longtemps (que ça aille moins vite) en asynchrone qu'en synchrone ?
+    Ce n'est pas plutôt l'inverse ?}
+  \CER{J'ai modifie la phrase.}
+\end{itemize}
+
+A priori, obtaining a relative gain greater than 1 would be difficult in a local
+area network configuration where the synchronous mode will take advantage on the
+rapid exchange of information on such high-speed links. Thus, the methodology
+adopted was to launch the application on a clustered network. In this
+configuration, degrading the inter-cluster network performance will penalize the
+synchronous mode allowing to get a relative gain greater than 1.  This action
+simulates the case of distant clusters linked with long distance network as in grid computing context.
+
+
+% As a first step, 
+The algorithm was run on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The algorithm convergence with a 3D
+matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
+\text{\np{3375000}}$ entries), is obtained in asynchronous in average 2.5 times speeder than the synchronous mode. 
+\AG{Expliquer comment lire les tableaux.}
+\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires}
 % use the same column width for the following three tables
 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
 \newenvironment{mytable}[1]{% #1: number of columns for data
@@ -490,183 +512,185 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{171}^\text{3} =
   \caption{2 clusters, each with 50 nodes}
   \label{tab.cluster.2x50}
 
-  \begin{mytable}{6}
+  \begin{mytable}{5}
     \hline
-    bandwidth
-    & 5         & 5         & 5         & 5         & 5         & 50 \\
+    bandwidth (Mbit/s)
+    & 5         & 5         & 5         & 5         & 5         \\
     \hline
-    latency
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\
+    latency (ms)
+    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      \\
     \hline
-    power
-    & 1         & 1         & 1         & 1.5       & 1.5       & 1.5 \\
+    power (GFlops)
+    & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
     size
-    & 62        & 62        & 62        & 100       & 100       & 110 \\
+    & 62        & 62        & 62        & 100       & 100       \\
     \hline
-    Prec/Eprec
-    & \np{E-5}   & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} & \np{E-11} \\
+    Precision
+    & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
     \hline
     \hline
     Relative gain
-    & 2.52     & 2.55     & 2.52     & 2.57     & 2.54     & 2.53 \\
+    & 2.52      & 2.55      & 2.52      & 2.57      & 2.54      \\
     \hline
   \end{mytable}
 
   \bigskip
 
-  \begin{mytable}{6}
+  \begin{mytable}{5}
     \hline
-    bandwidth
-    & 50        & 50        & 50        & 50        & 10        & 10 \\
+    bandwidth (Mbit/s)
+    & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
-    latency
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.03      & 0.01 \\
+    latency (ms)
+    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\ %      & 0.03      & 0.01 \\
     \hline
-    power
-    & 1.5       & 1.5       & 1.5       & 1.5       & 1         & 1.5 \\
+    Power (GFlops)
+    & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
     size
-    & 120       & 130       & 140       & 150       & 171       & 171 \\
+    & 110       & 120       & 130       & 140       & 150  \\ %     & 171       & 171 \\
     \hline
-    Prec/Eprec
-    & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-5}  & \np{E-5} \\
+    Precision
+    & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5}  & \np{E-5} \\
     \hline
     \hline
     Relative gain
-    & 2.51     & 2.58     & 2.55     & 2.54     & 1.59      & 1.29 \\
+    & 2.53      & 2.51     & 2.58     & 2.55     & 2.54   \\ %  & 1.59      & 1.29 \\
     \hline
   \end{mytable}
 \end{table}
   
-Then we have changed the network configuration using three clusters containing
-respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
-clusters. In the same way as above, a judicious choice of key parameters has
-permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
-relative gains greater than 1 with a matrix size from 62 to 100 elements.
-
-\begin{table}[!t]
-  \centering
-  \caption{3 clusters, each with 33 nodes}
-  \label{tab.cluster.3x33}
-
-  \begin{mytable}{6}
-    \hline
-    bandwidth
-    & 10       & 5        & 4        & 3        & 2        & 6 \\
-    \hline
-    latency
-    & 0.01     & 0.02     & 0.02     & 0.02     & 0.02     & 0.02 \\
-    \hline
-    power
-    & 1        & 1        & 1        & 1        & 1        & 1 \\
-    \hline
-    size
-    & 62       & 100      & 100      & 100      & 100      & 171 \\
-    \hline
-    Prec/Eprec
-    & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} \\
-    \hline
-    \hline
-    Relative gain
-    & 1.003    & 1.01     & 1.08     & 1.19     & 1.28     & 1.01 \\
-    \hline
-  \end{mytable}
-\end{table}
-
-In a final step, results of an execution attempt to scale up the three clustered
-configuration but increasing by two hundreds hosts has been recorded in
-Table~\ref{tab.cluster.3x67}.
-
-\begin{table}[!t]
-  \centering
-  \caption{3 clusters, each with 66 nodes}
-  \label{tab.cluster.3x67}
-
-  \begin{mytable}{1}
-    \hline
-    bandwidth  & 1 \\
-    \hline
-    latency    & 0.02 \\
-    \hline
-    power      & 1 \\
-    \hline
-    size       & 62 \\
-    \hline
-    Prec/Eprec & \np{E-5} \\
-    \hline
-    \hline
-    Relative gain    & 1.11 \\
-    \hline
-  \end{mytable}
-\end{table}
+%Then we have changed the network configuration using three clusters containing
+%respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
+%clusters. In the same way as above, a judicious choice of key parameters has
+%permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
+%relative gains greater than 1 with a matrix size from 62 to 100 elements.
+
+\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
+%\begin{table}[!t]
+%  \centering
+%  \caption{3 clusters, each with 33 nodes}
+%  \label{tab.cluster.3x33}
+%
+%  \begin{mytable}{6}
+%    \hline
+%    bandwidth 
+%    & 10       & 5        & 4        & 3        & 2        & 6 \\
+%    \hline
+%    latency
+%    & 0.01     & 0.02     & 0.02     & 0.02     & 0.02     & 0.02 \\
+%    \hline
+%    power
+%    & 1        & 1        & 1        & 1        & 1        & 1 \\
+%    \hline
+%    size
+%    & 62       & 100      & 100      & 100      & 100      & 171 \\
+%    \hline
+%    Prec/Eprec
+%    & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} \\
+%    \hline
+%    \hline
+%    Relative gain
+%    & 1.003    & 1.01     & 1.08     & 1.19     & 1.28     & 1.01 \\
+%    \hline
+%  \end{mytable}
+%\end{table}
+
+%In a final step, results of an execution attempt to scale up the three clustered
+%configuration but increasing by two hundreds hosts has been recorded in
+%Table~\ref{tab.cluster.3x67}.
+
+%\begin{table}[!t]
+%  \centering
+%  \caption{3 clusters, each with 66 nodes}
+%  \label{tab.cluster.3x67}
+%
+%  \begin{mytable}{1}
+%    \hline
+%    bandwidth  & 1 \\
+%    \hline
+%    latency    & 0.02 \\
+%    \hline
+%    power      & 1 \\
+%    \hline
+%    size       & 62 \\
+%    \hline
+%    Prec/Eprec & \np{E-5} \\
+%    \hline
+%    \hline
+%    Relative gain    & 1.11 \\
+%    \hline
+%  \end{mytable}
+%\end{table}
 
 Note that the program was run with the following parameters:
 
 \paragraph*{SMPI parameters}
 
 ~\\{}\AG{Donner un peu plus de précisions (plateforme en particulier).}
+\CER {Précisions ajoutées}
+
 \begin{itemize}
-\item HOSTFILE: Hosts file description.
-\item PLATFORM: file description of the platform architecture : clusters (CPU
-  power, \dots{}), intra cluster network description, inter cluster network
-  (bandwidth, latency, \dots{}).
+\item HOSTFILE: Text file containing the list of the processors units name. Here 100 hosts;
+\item PLATFORM: XML file description of the platform architecture : two clusters (cluster1 and cluster2) with the following characteristics :
+
+       - Processor unit power : 1.5 GFlops;
+
+       - Intracluster network : bandwidth = 1,25 Gbits/s and latency = \np{E-5} ms;
+
+       - Intercluster network : bandwidth = 5 Mbits/s and latency = 5.\np{E-3} ms;
 \end{itemize}
 
 
 \paragraph*{Arguments of the program}
 
 \begin{itemize}
-       \item Description of the cluster architecture;
-       \item Maximum number of internal and external iterations;
-       \item Internal and external precisions;
+       \item Description of the cluster architecture matching the format <Number of cluster> <Number of hosts in cluster\_1> <Number of hosts in cluster\_2>;
+       \item Maximum number of iterations;
+       \item Precisions on the residual error;
        \item Matrix size $N_x$, $N_y$ and $N_z$;
-       \item Matrix diagonal value: \np{6.0};
-       \item Matrix off-diagonal value: \np{-1.0};
-       \item Execution Mode: synchronous or asynchronous.
+       \item Matrix diagonal value: \np{1.0}   (See (3));
+       \item Matrix off-diagonal value: $-\frac{1}{6}$         (See(3));
+       \item Communication mode: Asynchronous.
 \end{itemize}
 
 \paragraph*{Interpretations and comments}
 
-After analyzing the outputs, generally, for the configuration with two or three
-clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50}
-and~\ref{tab.cluster.3x33}), some combinations of the used parameters affecting
+After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting
 the results have given a relative gain more than 2.5, showing the effectiveness of the
 asynchronous performance compared to the synchronous mode.
 
-In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows
-that with a deterioration of inter cluster network set with \np[Mbit/s]{5} of
-bandwidth, a latency in order of a hundredth of a millisecond and a system power
-of one GFlops, an efficiency of about \np[\%]{40} in asynchronous mode is
-obtained for a matrix size of 62 elements. It is noticed that the result remains
-stable even if we vary the external precision from \np{E-5} to \np{E-9}. By
+With these settings, Table~\ref{tab.cluster.2x50} shows
+that after a deterioration of inter cluster network with a bandwidth of \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
+of one GFlops, an efficiency of about \np[\%]{40} is
+obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
 increasing the matrix size up to 100 elements, it was necessary to increase the
-CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a convergence of the algorithm
-with the same order of asynchronous mode efficiency.  Maintaining such a system
-power but this time, increasing network throughput inter cluster up to
-\np[Mbit/s]{50}, the result of efficiency with a relative gain of 1.5\AG[]{2.5 ?} is obtained with
+CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
+\np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5\AG[]{2.5 ?} is obtained with
 high external precision of \np{E-11} for a matrix size from 110 to 150 side
 elements.
 
-For the 3 clusters architecture including a total of 100 hosts,
-Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination
-which gives a relative gain of asynchronous mode more than 1.2. Indeed, for a
-matrix size of 62 elements, equality between the performance of the two modes
-(synchronous and asynchronous) is achieved with an inter cluster of
-\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix size of 100 points, it was necessary to degrade the
-inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
+%For the 3 clusters architecture including a total of 100 hosts,
+%Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination
+%which gives a relative gain of asynchronous mode more than 1.2. Indeed, for a
+%matrix size of 62 elements, equality between the performance of the two modes
+%(synchronous and asynchronous) is achieved with an inter cluster of
+%\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
+%inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
 \AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
   Quelle est la perte de perfs en faisant ça ?}
 
-A last attempt was made for a configuration of three clusters but more powerful
-with 200 nodes in total. The convergence with a relative gain around 1.1 was
-obtained with a bandwidth of \np[Mbit/s]{1} as shown in
-Table~\ref{tab.cluster.3x67}.
+%A last attempt was made for a configuration of three clusters but more powerful
+%with 200 nodes in total. The convergence with a relative gain around 1.1 was
+%obtained with a bandwidth of \np[Mbit/s]{1} as shown in
+%Table~\ref{tab.cluster.3x67}.
 
 \RC{Est ce qu'on sait expliquer pourquoi il y a une telle différence entre les résultats avec 2 et 3 clusters... Avec 3 clusters, ils sont pas très bons... Je me demande s'il ne faut pas les enlever...}
 \RC{En fait je pense avoir la réponse à ma remarque... On voit avec les 2 clusters que le gain est d'autant plus grand qu'on choisit une bonne précision. Donc, plusieurs solutions, lancer rapidement un long test pour confirmer ca, ou enlever des tests... ou on ne change rien :-)}
 \LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
-
+\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
 The experimental results on executing a parallel iterative algorithm in 
 asynchronous mode on an environment simulating a large scale of virtual