-efficiency of about 40\% in asynchronous mode is obtained for a matrix size of 62
-elements . It is noticed that the result remains stable even if we vary the
-external precision from E -05 to E-09. By increasing the problem size up to 100
-elements, it was necessary to increase the CPU power of 50 \% to 1.5 GFlops for a
+efficiency of about \np[\%]{40} in asynchronous mode is obtained for a matrix size of 62
+elements. It is noticed that the result remains stable even if we vary the
+external precision from \np{E-5} to \np{E-9}. By increasing the problem size up to 100
+elements, it was necessary to increase the CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a