]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
V1
[hpcc2014.git] / hpcc.tex
index 81062dea9d00385f4d765456f1fc4dfb33f5f44b..767aa599a2ec1b5f128fcf4d0795df9b731f611a 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -288,6 +288,8 @@ These two techniques can help to run simulations at a very large scale.
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \section{Simulation of the multisplitting method}
+
+\subsection{The multisplitting method}
 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping  
 \begin{equation*}
@@ -442,6 +444,8 @@ The parallel solving of the 3D Poisson problem with our multisplitting method re
 \end{figure}
 
 
+\subsection{Simulation of the multisplitting method using SimGrid and SMPI}
+
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -646,7 +650,7 @@ Note that the program was run with the following parameters:
 \item Maximum number of iterations;
 \item Precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See~(\ref{eq:03}));
+\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
 \item Matrix off-diagonal value: $-1$;
 \item Communication mode: asynchronous.
 \end{itemize}