]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif pour merger
[hpcc2014.git] / hpcc.tex
index 640f3ae56c6fb43afd652aaa84139a68b3b29d0b..865fb94f6c32d3075799537f4e8d5972cff7911f 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -135,35 +135,7 @@ iterative  asynchronous algorithms  to solve  a given  problem on  a large-scale
 simulated environment challenges to  find optimal configurations giving the best
 results with a lowest residual error and in the best of execution time.
 
 simulated environment challenges to  find optimal configurations giving the best
 results with a lowest residual error and in the best of execution time.
 
-<<<<<<< HEAD
-To our knowledge, there is no existing work on the large-scale simulation of a
-real AIAC application. The aim of this paper is twofold. First we give a first
-approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
-SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
-asynchronous mode algorithms by comparing their performance with the synchronous
-mode. More precisely, we had implemented a program for solving large
-linear system of equations by numerical method GMRES (Generalized
-Minimal Residual) \cite{ref1}. We show, that with minor modifications of the
-initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a
-real AIAC application on different computing architectures. The simulated
-results we obtained are in line with real results exposed in ??\AG[]{ref?}.
-SimGrid had allowed us to launch the application from a modest computing
-infrastructure by simulating different distributed architectures composed by
-clusters nodes interconnected by variable speed networks. In the simulated environment, after setting appropriate 
-network and cluster parameters like the network bandwidth, latency or the processors power, 
-the experimental results have demonstrated a asynchronous execution time saving up to \np[\%]{40} in
-compared to the synchronous mode.
-\AG{Il faudrait revoir la phrase précédente (couper en deux?).  Là, on peut
-  avoir l'impression que le gain de \np[\%]{40} est entre une exécution réelle
-  et une exécution simulée!}
-\CER{La phrase a été modifiée}
-
-This article is structured as follows: after this introduction, the next  section will give a brief description of
-iterative asynchronous model.  Then, the simulation framework SimGrid is presented with the settings to create various
-distributed architectures. The algorithm of  the multisplitting method based on GMRES \LZK{??? GMRES n'utilise pas la méthode de multisplitting! Sinon ne doit on pas expliquer le choix d'une méthode de multisplitting?} \CER{La phrase a été corrigée} written with MPI primitives and
-its adaptation to SimGrid with SMPI (Simulated MPI) is detailed in the next section. At last, the experiments results
-carried out will be presented before some concluding remarks and future works.
-=======
+
 To our knowledge,  there is no existing work on the  large-scale simulation of a
 real  AIAC application.   {\bf  The contribution  of  the present  paper can  be
   summarised  in two  main  points}.  First  we  give a  first  approach of  the
 To our knowledge,  there is no existing work on the  large-scale simulation of a
 real  AIAC application.   {\bf  The contribution  of  the present  paper can  be
   summarised  in two  main  points}.  First  we  give a  first  approach of  the
@@ -196,7 +168,7 @@ based  on GMRES to  solve each  block obtained  of the  splitting. This  code is
 written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
 MPI) is  detailed in the next  section. At last, the  simulation results carried
 out will be presented before some concluding remarks and future works.
 written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
 MPI) is  detailed in the next  section. At last, the  simulation results carried
 out will be presented before some concluding remarks and future works.
->>>>>>> 6785b9ef58de0db67c33ca901c7813f3dfdc76e0
+
  
 \section{Motivations and scientific context}
 
  
 \section{Motivations and scientific context}