]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v11
[hpcc2014.git] / hpcc.tex
index 1aae53ae4c10a2a16f2e77db58d89263a0870d2e..dc760420204bd9bfb89043b036e1875573adc85c 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -82,8 +82,8 @@ what parameters  could influence or not  the behaviors of an  algorithm. In this
 paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
-simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
-codes. Simulations allow us to see when the multisplitting algorithm can be more
+simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
+codes and simulations allow us to see when the asynchronous multisplitting algorithm can be more
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
@@ -103,7 +103,7 @@ suggests, these algorithms solve a given problem by successive iterations ($X_{n
 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
 demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
 
-Parallelization of such algorithms generally involve the division of the problem
+Parallelization of such algorithms generally involves the division of the problem
 into  several  \emph{blocks}  that  will  be  solved  in  parallel  on  multiple
 processing units. The latter will communicate each intermediate results before a
 new  iteration starts  and until  the  approximate solution  is reached.   These
@@ -228,13 +228,13 @@ In the context of asynchronous algorithms, the number of iterations to reach the
 convergence depends on  the delay of messages. With  synchronous iterations, the
 number of  iterations is exactly  the same than  in the sequential mode  (if the
 parallelization process does  not change the algorithm). So  the difficulty with
-asynchronous iteratie algorithms comes from the fact it is necessary to run the algorithm
+asynchronous iterative algorithms comes from the fact it is necessary to run the algorithm
 with real data. In fact, from an execution to another the order of messages will
 change and the  number of iterations to reach the  convergence will also change.
 According  to all  the parameters  of the  platform (number  of nodes,  power of
-nodes,  inter  and  intra clusrters  bandwith  and  latency,  ....) and  of  the
-algorithm  (number   of  splitting  with  the   multisplitting  algorithm),  the
-multisplitting code  will obtain the solution  more or less  quickly. Or course,
+nodes,  inter  and  intra clusrters  bandwith  and  latency, etc.) and  of  the
+algorithm  (number   of  splittings  with  the   multisplitting  algorithm),  the
+multisplitting code  will obtain the solution  more or less  quickly. Of course,
 the GMRES method also depends of the same parameters. As it is difficult to have
 access to  many clusters,  grids or supercomputers  with many  different network
 parameters,  it  is  interesting  to  be  able  to  simulate  the  behaviors  of
@@ -251,8 +251,8 @@ SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation
 framework to study the behavior of large-scale distributed systems.  As its name
 says, it emanates from the grid computing community, but is nowadays used to
 study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
-date from 1999, but it's still actively developed and distributed as an open
-source software.  Today, it's one of the major generic tools in the field of
+date from 1999, but it is still actively developed and distributed as an open
+source software.  Today, it is one of the major generic tools in the field of
 simulation for large-scale distributed systems.
 
 SimGrid provides several programming interfaces: MSG to simulate Concurrent
@@ -384,7 +384,7 @@ exchanged by message passing using MPI non-blocking communication routines.
 \begin{figure}[!t]
 \centering
   \includegraphics[width=60mm,keepaspectratio]{clustering}
-\caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
+\caption{Example of three distant clusters of processors.}
 \label{fig:4.1}
 \end{figure}
 
@@ -422,7 +422,7 @@ u =0 \text{~on~} \Gamma =\partial\Omega
 \right.
 \label{eq:02}
 \end{equation}
-where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
+where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite differences scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
 \begin{equation}
 \begin{array}{l}
 u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z),
@@ -450,7 +450,7 @@ The parallel solving of the 3D Poisson problem with our multisplitting method re
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
-debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. For the synchronous GMRES method, the execution of the program raised no particular issue but in the asynchronous multisplitting method , the review of the sequence of \texttt{MPI\_Isend, MPI\_Irecv} and \texttt{MPI\_Waitall} instructions
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. For the synchronous GMRES method, the execution of the program raised no particular issue but in the asynchronous multisplitting method, the review of the sequence of \texttt{MPI\_Isend, MPI\_Irecv} and \texttt{MPI\_Waitall} instructions
 and with the addition of the primitive \texttt{MPI\_Test} was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
 %\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} 
 %\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.}
@@ -493,7 +493,7 @@ simulates the case of distant clusters linked with long distance network as in g
 
 
 Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. 
 %\AG{Expliquer comment lire les tableaux.}
@@ -518,12 +518,12 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
     latency (ms)
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      \\
+    & 20      &  20      & 20      & 20      & 20      \\
     \hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
-    size $(n^3)$
+    size $(N)$
     & 62        & 62        & 62        & 100       & 100       \\
     \hline
     Precision
@@ -543,12 +543,12 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
     latency (ms)
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\ %      & 0.03      & 0.01 \\
+    & 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
     \hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
-    size $(n^3)$
+    size $(N)$
     & 110       & 120       & 130       & 140       & 150  \\ %     & 171       & 171 \\
     \hline
     Precision
@@ -561,13 +561,15 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
   \end{mytable}
 \end{table}
   
+\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
 %clusters. In the same way as above, a judicious choice of key parameters has
 %permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
 %relative gains greater than 1 with a matrix size from 62 to 100 elements.
 
-\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
+%\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
 %\begin{table}[!t]
 %  \centering
 %  \caption{3 clusters, each with 33 nodes}
@@ -634,8 +636,8 @@ Note that the program was run with the following parameters:
   \begin{itemize}
   \item 2 clusters of 50 hosts each;
   \item Processor unit power: \np[GFlops]{1} or \np[GFlops]{1.5};
-  \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{0.05};
-  \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[$\mu$s]{20};
+  \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{50};
+  \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[ms]{20};
   \end{itemize}
 \end{itemize}
 
@@ -645,11 +647,11 @@ Note that the program was run with the following parameters:
 \begin{itemize}
 \item Description of the cluster architecture matching the format <Number of
   clusters> <Number of hosts in cluster1> <Number of hosts in cluster2>;
-\item Maximum number of iterations;
-\item Precisions on the residual error;
+\item Maximum numbers of outer and inner iterations;
+\item Outer and inner precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
-\item Matrix off-diagonal value: $-1$;
+\item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
+\item Matrix off-diagonal values: $-1$;
 \item Communication mode: asynchronous.
 \end{itemize}
 
@@ -691,31 +693,29 @@ elements.
 %\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
 The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
-Our work has demonstrated that using such a simulation tool allow us to 
-reach the following three objectives: 
+In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
+reach the following two objectives: 
 
 \begin{enumerate}
-\item To have a flexible configurable execution platform resolving the 
-hard exercise to access to very limited but so solicited physical 
-resources;
-\item to ensure the algorithm convergence with a reasonable time and
-iteration number ;
-\item and finally and more importantly, to find the correct combination 
-of the cluster and network specifications permitting to save time in 
-executing the algorithm in asynchronous mode.
+\item  To have  a flexible  configurable execution  platform that  allows  us to
+  simulate algorithms for  which execution of all parts of
+  the  code is  necessary. Using  simulations before  real executions  is  a nice
+  solution to detect potential scalability problems.
+
+\item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
-Our results have shown that in certain conditions, asynchronous mode is 
-speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
+Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
- Several studies have already addressed the performance execution time of 
+Several studies have already addressed the performance execution time of 
 this class of algorithm. The work presented in this paper has 
 demonstrated an original solution to optimize the use of a simulation 
 tool to run efficiently an iterative parallel algorithm in asynchronous 
 mode in a grid architecture. 
 
-\LZK{Perspectives???}
+In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
 
 \section*{Acknowledgment}