]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v0
[hpcc2014.git] / hpcc.tex
index 243441652ae5ec4e70cf384e6f8d09e37999f843..306cf68cb0f0a06c3296fc3558aceb525fcb7b10 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -82,8 +82,8 @@ what parameters  could influence or not  the behaviors of an  algorithm. In this
 paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
-simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
-codes. Simulations allow us to see when the multisplitting algorithm can be more
+simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
+codes and simulations allow us to see when the asynchronous multisplitting algorithm can be more
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
@@ -383,8 +383,8 @@ exchanged by message passing using MPI non-blocking communication routines.
 
 \begin{figure}[!t]
 \centering
-  \includegraphics[width=60mm,keepaspectratio]{clustering}
-\caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
+  \includegraphics[width=60mm,keepaspectratio]{clustering2}
+\caption{Example of two distant clusters of processors.}
 \label{fig:4.1}
 \end{figure}
 
@@ -518,7 +518,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
     latency (ms)
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      \\
+    & 20      &  20      & 20      & 20      & 20      \\
     \hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
@@ -543,7 +543,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
     latency (ms)
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\ %      & 0.03      & 0.01 \\
+    & 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
     \hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
@@ -561,13 +561,15 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
   \end{mytable}
 \end{table}
   
+\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
 %clusters. In the same way as above, a judicious choice of key parameters has
 %permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
 %relative gains greater than 1 with a matrix size from 62 to 100 elements.
 
-\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
+%\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
 %\begin{table}[!t]
 %  \centering
 %  \caption{3 clusters, each with 33 nodes}
@@ -634,8 +636,8 @@ Note that the program was run with the following parameters:
   \begin{itemize}
   \item 2 clusters of 50 hosts each;
   \item Processor unit power: \np[GFlops]{1} or \np[GFlops]{1.5};
-  \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{0.05};
-  \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[$\mu$s]{20};
+  \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{50};
+  \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[ms]{20};
   \end{itemize}
 \end{itemize}
 
@@ -692,22 +694,17 @@ elements.
 \section{Conclusion}
 The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
 In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
-reach the following three objectives: 
+reach the following two objectives: 
 
 \begin{enumerate}
 \item  To have  a flexible  configurable execution  platform that  allows  us to
-  simulate asynchronous iterative algorithm for  which execution of all parts of
-  the  code is  necessary. Using  simulations before  real execution  is  a nice
-  solution to detect the scalability problems.
-
-\item to ensure the algorithm convergence with a reasonable time and
-iteration number ;
-\item and finally and more importantly, to find the correct combination 
-of the cluster and network specifications permitting to save time in 
-executing the algorithm in asynchronous mode.
+  simulate algorithms for  which execution of all parts of
+  the  code is  necessary. Using  simulations before  real executions  is  a nice
+  solution to detect potential scalability problems.
+
+\item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
-Our results have shown that in certain conditions, asynchronous mode is 
-speeder up to \np[\%]{40} comparing to the synchronous GMRES method
+Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.