-Parallel computing and high performance computing (HPC) are becoming
-more and more imperative for solving various problems raised by
-researchers on various scientific disciplines but also by industrial in
-the field. Indeed, the increasing complexity of these requested
-applications combined with a continuous increase of their sizes lead to
-write distributed and parallel algorithms requiring significant hardware
-resources (grid computing, clusters, broadband network, etc\dots{}) but
-also a non-negligible CPU execution time. We consider in this paper a
-class of highly efficient parallel algorithms called iterative executed
-in a distributed environment. As their name suggests, these algorithm
-solves a given problem that might be NP- complete complex by successive
-iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find
-an approximate value $X^*$ of the solution with a very low
-residual error. Several well-known methods demonstrate the convergence
-of these algorithms. Generally, to reduce the complexity and the
-execution time, the problem is divided into several \emph{pieces} that will
-be solved in parallel on multiple processing units. The latter will
-communicate each intermediate results before a new iteration starts
-until the approximate solution is reached. These distributed parallel
-computations can be performed either in \emph{synchronous} communication mode
-where a new iteration begin only when all nodes communications are
-completed, either \emph{asynchronous} mode where processors can continue
-independently without or few synchronization points. Despite the
-effectiveness of iterative approach, a major drawback of the method is
-the requirement of huge resources in terms of computing capacity,
-storage and high speed communication network. Indeed, limited physical
-resources are blocking factors for large-scale deployment of parallel
-algorithms.
-
-In recent years, the use of a simulation environment to execute parallel
-iterative algorithms found some interests in reducing the highly cost of
-access to computing resources: (1) for the applications development life
-cycle and in code debugging (2) and in production to get results in a
-reasonable execution time with a simulated infrastructure not accessible
-with physical resources. Indeed, the launch of distributed iterative
-asynchronous algorithms to solve a given problem on a large-scale
-simulated environment challenges to find optimal configurations giving
-the best results with a lowest residual error and in the best of
-execution time. According our knowledge, no testing of large-scale
-simulation of the class of algorithm solving to achieve real results has
-been undertaken to date. We had in the scope of this work implemented a
-program for solving large non-symmetric linear system of equations by
-numerical method GMRES (Generalized Minimal Residual) in the simulation
-environment SimGrid. The simulated platform had allowed us to launch
-the application from a modest computing infrastructure by simulating
-different distributed architectures composed by clusters nodes
-interconnected by variable speed networks. In addition, it has been
-permitted to show the effectiveness of asynchronous mode algorithm by
-comparing its performance with the synchronous mode time. With selected
-parameters on the network platforms (bandwidth, latency of inter cluster
-network) and on the clusters architecture (number, capacity calculation
-power) in the simulated environment, the experimental results have
-demonstrated not only the algorithm convergence within a reasonable time
-compared with the physical environment performance, but also a time
+Parallel computing and high performance computing (HPC) are becoming more and more imperative for solving various
+problems raised by researchers on various scientific disciplines but also by industrial in the field. Indeed, the
+increasing complexity of these requested applications combined with a continuous increase of their sizes lead to write
+distributed and parallel algorithms requiring significant hardware resources (grid computing, clusters, broadband
+network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
+parallel algorithms called \texttt{numerical iterative algorithms} executed in a distributed environment. As their name
+suggests, these algorithm solves a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
+$X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
+demonstrate the convergence of these algorithms \cite{}.
+
+Parallelization of such algorithms generally involved the division of the problem into several \emph{pieces} that will
+be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
+iteration starts until the approximate solution is reached. These parallel computations can be performed
+either in \emph{synchronous} communication mode where a new iteration begin only when all nodes communications are
+completed, either \emph{asynchronous} mode where processors can continue independently without or few synchronization
+points.
+
+% DL : reprendre correction ici
+Despite the effectiveness of iterative approach, a major drawback of the method is the requirement of huge
+resources in terms of computing capacity, storage and high speed communication network. Indeed, limited physical
+resources are blocking factors for large-scale deployment of parallel algorithms.
+
+In recent years, the use of a simulation environment to execute parallel iterative algorithms found some interests in
+reducing the highly cost of access to computing resources: (1) for the applications development life cycle and in code
+debugging (2) and in production to get results in a reasonable execution time with a simulated infrastructure not
+accessible with physical resources. Indeed, the launch of distributed iterative asynchronous algorithms to solve a
+given problem on a large-scale simulated environment challenges to find optimal configurations giving the best results
+with a lowest residual error and in the best of execution time. According our knowledge, no testing of large-scale
+simulation of the class of algorithm solving to achieve real results has been undertaken to date. We had in the scope
+of this work implemented a program for solving large non-symmetric linear system of equations by numerical method
+GMRES (Generalized Minimal Residual) in the simulation environment SimGrid. The simulated platform had allowed us to
+launch the application from a modest computing infrastructure by simulating different distributed architectures
+composed by clusters nodes interconnected by variable speed networks. In addition, it has been permitted to show the
+effectiveness of asynchronous mode algorithm by comparing its performance with the synchronous mode time. With selected
+parameters on the network platforms (bandwidth, latency of inter cluster network) and on the clusters architecture
+(number, capacity calculation power) in the simulated environment, the experimental results have demonstrated not only
+the algorithm convergence within a reasonable time compared with the physical environment performance, but also a time