]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modifs tables
[hpcc2014.git] / hpcc.tex
index c48f1f67fbd162e5d46bcf110ee93fb6d31fec7c..22fa0472b9b38ef08bc932da3c7c42705fc9fb68 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -1,4 +1,3 @@
-
 \documentclass[conference]{IEEEtran}
 
 \usepackage[T1]{fontenc}
 \documentclass[conference]{IEEEtran}
 
 \usepackage[T1]{fontenc}
@@ -493,7 +492,7 @@ simulates the case of distant clusters linked with long distance network as in g
 
 
 Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
 
 
 Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. 
 %\AG{Expliquer comment lire les tableaux.}
 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. 
 %\AG{Expliquer comment lire les tableaux.}
@@ -509,7 +508,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \begin{table}[!t]
   \centering
   \caption{Relative gain  of the multisplitting algorithm compared  to GMRES for
 \begin{table}[!t]
   \centering
   \caption{Relative gain  of the multisplitting algorithm compared  to GMRES for
-    different configurations with 2 clusters, each one composed of 50 nodes.}
+    different configurations with 2 clusters, each one composed of 50 nodes. Latency = $20$ms}
   \label{tab.cluster.2x50}
 
   \begin{mytable}{5}
   \label{tab.cluster.2x50}
 
   \begin{mytable}{5}
@@ -517,14 +516,14 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     bandwidth (Mbit/s)
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
     bandwidth (Mbit/s)
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
-    latency (ms)
-    & 20      &  20      & 20      & 20      & 20      \\
-    \hline
+  %  latency (ms)
+   % & 20      &  20      & 20      & 20      & 20      \\
+    %\hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
-    size $(n^3)$
-    & 62        & 62        & 62        & 100       & 100       \\
+    size $(N)$
+    & $62^3$        & $62^3$        & $62^3$        & $100^3$       & $100^3$       \\
     \hline
     Precision
     & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
     \hline
     Precision
     & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
@@ -542,14 +541,14 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     bandwidth (Mbit/s)
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
     bandwidth (Mbit/s)
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
-    latency (ms)
-    & 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
-    \hline
+    %latency (ms)
+    %& 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
+    %\hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
-    size $(n^3)$
-    & 110       & 120       & 130       & 140       & 150  \\ %     & 171       & 171 \\
+    size $(N)$
+    & $110^3$       & $120^3$       & $130^3$       & $140^3$       & $150^3$  \\ %     & 171       & 171 \\
     \hline
     Precision
     & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5}  & \np{E-5} \\
     \hline
     Precision
     & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5}  & \np{E-5} \\
@@ -561,7 +560,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
   \end{mytable}
 \end{table}
   
   \end{mytable}
 \end{table}
   
-\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+%\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
 
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
 
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
@@ -647,11 +646,11 @@ Note that the program was run with the following parameters:
 \begin{itemize}
 \item Description of the cluster architecture matching the format <Number of
   clusters> <Number of hosts in cluster1> <Number of hosts in cluster2>;
 \begin{itemize}
 \item Description of the cluster architecture matching the format <Number of
   clusters> <Number of hosts in cluster1> <Number of hosts in cluster2>;
-\item Maximum number of iterations;
-\item Precisions on the residual error;
+\item Maximum numbers of outer and inner iterations;
+\item Outer and inner precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
-\item Matrix off-diagonal value: $-1$;
+\item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
+\item Matrix off-diagonal values: $-1$;
 \item Communication mode: asynchronous.
 \end{itemize}
 
 \item Communication mode: asynchronous.
 \end{itemize}
 
@@ -664,12 +663,12 @@ asynchronous multisplitting  compared to GMRES with two distant clusters.
 With these settings, Table~\ref{tab.cluster.2x50} shows
 that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
 of one GFlops, an efficiency of about \np[\%]{40} is
 With these settings, Table~\ref{tab.cluster.2x50} shows
 that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
 of one GFlops, an efficiency of about \np[\%]{40} is
-obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
-increasing the matrix size up to 100 elements, it was necessary to increase the
+increasing the matrix size up to $100^3$ elements, it was necessary to increase the
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with
-high external precision of \np{E-11} for a matrix size from 110 to 150 side
+high external precision of \np{E-11} for a matrix size from $110^3$ to $150^3$ side
 elements.
 
 %For the 3 clusters architecture including a total of 100 hosts,
 elements.
 
 %For the 3 clusters architecture including a total of 100 hosts,
@@ -679,8 +678,8 @@ elements.
 %(synchronous and asynchronous) is achieved with an inter cluster of
 %\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
 %inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
 %(synchronous and asynchronous) is achieved with an inter cluster of
 %\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
 %inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
-\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
-  Quelle est la perte de perfs en faisant ça ?}
+%\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
+  %Quelle est la perte de perfs en faisant ça ?}
 
 %A last attempt was made for a configuration of three clusters but more powerful
 %with 200 nodes in total. The convergence with a relative gain around 1.1 was
 
 %A last attempt was made for a configuration of three clusters but more powerful
 %with 200 nodes in total. The convergence with a relative gain around 1.1 was
@@ -704,7 +703,7 @@ reach the following two objectives:
 
 \item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
 
 \item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
-Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method
+Our results have shown that with two distant clusters, the asynchronous multisplitting method is faster to \np[\%]{40} compared to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
@@ -715,7 +714,7 @@ tool to run efficiently an iterative parallel algorithm in asynchronous
 mode in a grid architecture. 
 
 In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
 mode in a grid architecture. 
 
 In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
-We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to better experimentally validate our study. Finally, we also plan to study other problems with the multisplitting method and other asynchronous iterative methods.
 
 \section*{Acknowledgment}
 
 
 \section*{Acknowledgment}