Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
\text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one.
%\AG{Expliquer comment lire les tableaux.}
power (GFlops)
& 1 & 1 & 1 & 1.5 & 1.5 \\
\hline
- size $(n^3)$
+ size $(N)$
& 62 & 62 & 62 & 100 & 100 \\
\hline
Precision
Power (GFlops)
& 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ % & 1 & 1.5 \\
\hline
- size $(n^3)$
+ size $(N)$
& 110 & 120 & 130 & 140 & 150 \\ % & 171 & 171 \\
\hline
Precision
\begin{itemize}
\item Description of the cluster architecture matching the format <Number of
clusters> <Number of hosts in cluster1> <Number of hosts in cluster2>;
-\item Maximum number of iterations;
-\item Precisions on the residual error;
+\item Maximum numbers of outer and inner iterations;
+\item Outer and inner precisions on the residual error;
\item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
-\item Matrix off-diagonal value: $-1$;
+\item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
+\item Matrix off-diagonal values: $-1$;
\item Communication mode: asynchronous.
\end{itemize}
With these settings, Table~\ref{tab.cluster.2x50} shows
that after setting the bandwidth of the inter cluster network to \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
of one GFlops, an efficiency of about \np[\%]{40} is
-obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
increasing the matrix size up to 100 elements, it was necessary to increase the
CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency. Maintaining such processor power but increasing network throughput inter cluster up to