]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Use non-breaking space before \cite and \ref.
[hpcc2014.git] / hpcc.tex
index 5226bc31f87800932802e445ad855a19367657fd..92d275c49c4245b8cc0a8481a7901084f4495bce 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -105,26 +105,26 @@ problems raised by  researchers on various scientific disciplines but also by in
 increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
 increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
-parallel algorithms called \texttt{numerical iterative algorithms} executed in a distributed environment. As their name
-suggests, these algorithm solves a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
+parallel algorithms called \emph{numerical iterative algorithms} executed in a distributed environment. As their name
+suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
-demonstrate the convergence of these algorithms \cite{BT89,Bahi07}. 
+demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
 
 
-Parallelization of such algorithms generally involved the division of the problem into several \emph{blocks} that will
+Parallelization of such algorithms generally involve the division of the problem into several \emph{blocks} that will
 be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
 iteration starts and until the approximate solution is reached. These parallel  computations can be performed either in
 be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
 iteration starts and until the approximate solution is reached. These parallel  computations can be performed either in
-\emph{synchronous} mode where a new iteration begin only when all nodes communications are completed,
-either \emph{asynchronous} mode where processors can continue independently without or few synchronization points. For
-instance in the \textit{Asynchronous Iterations - Asynchronous   Communications (AIAC)} model \cite{bcvc06:ij}, local
+\emph{synchronous} mode where a new iteration begins only when all nodes communications are completed,
+or in \emph{asynchronous} mode where processors can continue independently with few or no synchronization points. For
+instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model~\cite{bcvc06:ij}, local
 computations do not need to wait for required data. Processors can then perform their iterations with the data present
 at that time. Even if the number of iterations required before the convergence is generally greater than for the
 synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
 computations do not need to wait for required data. Processors can then perform their iterations with the data present
 at that time. Even if the number of iterations required before the convergence is generally greater than for the
 synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
-synchronizations especially in a grid computing context (see \cite{Bahi07} for more details).
+synchronizations especially in a grid computing context (see~\cite{Bahi07} for more details).
 
 Parallel numerical applications (synchronous or asynchronous) may have different configuration and deployment
 requirements.  Quantifying their resource allocation policies and application scheduling algorithms in
 grid computing environments under varying load, CPU power and network speeds is very costly, very labor intensive and very time
 
 Parallel numerical applications (synchronous or asynchronous) may have different configuration and deployment
 requirements.  Quantifying their resource allocation policies and application scheduling algorithms in
 grid computing environments under varying load, CPU power and network speeds is very costly, very labor intensive and very time
-consuming \cite{Calheiros:2011:CTM:1951445.1951450}. The case of AIAC algorithms is even more problematic since they are very sensible to the
+consuming~\cite{Calheiros:2011:CTM:1951445.1951450}. The case of AIAC algorithms is even more problematic since they are very sensible to the
 execution environment context. For instance, variations in the network bandwidth (intra and inter-clusters), in the
 number and the power of nodes, in the number of clusters... can lead to very different number of iterations and so to
 very different execution times. Then, it appears that the use of simulation tools to explore various platform
 execution environment context. For instance, variations in the network bandwidth (intra and inter-clusters), in the
 number and the power of nodes, in the number of clusters... can lead to very different number of iterations and so to
 very different execution times. Then, it appears that the use of simulation tools to explore various platform
@@ -138,14 +138,14 @@ best of execution time.
 
 To our knowledge, there is no existing work on the large-scale simulation of a real AIAC application. The aim of this
 paper is twofold. First we give a first approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
 
 To our knowledge, there is no existing work on the large-scale simulation of a real AIAC application. The aim of this
 paper is twofold. First we give a first approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
-SimGrid toolkit \cite{SimGrid}). Second, we confirm the effectiveness of asynchronous mode algorithms by comparing their
+SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of asynchronous mode algorithms by comparing their
 performance with the synchronous mode. More precisely, we had implemented a program for solving large non-symmetric
 linear system of equations by numerical method GMRES (Generalized Minimal Residual) []. We show, that with minor
 modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC
 application on different computing architectures. The simulated results we obtained are in line with real results
 performance with the synchronous mode. More precisely, we had implemented a program for solving large non-symmetric
 linear system of equations by numerical method GMRES (Generalized Minimal Residual) []. We show, that with minor
 modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC
 application on different computing architectures. The simulated results we obtained are in line with real results
-exposed in ??. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating
-different distributed architectures composed by clusters nodes interconnected by variable speed networks. It has been
-permitted to show  With selected parameters on the network platforms (bandwidth, latency of inter  cluster network) and
+exposed in ??\AG[]{??}. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating
+different distributed architectures composed by clusters nodes interconnected by variable speed networks.
+With selected parameters on the network platforms (bandwidth, latency of inter  cluster network) and
 on the clusters architecture (number, capacity calculation power) in the simulated environment, the experimental results
 have demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment
 performance, but also a time saving of up to \np[\%]{40} in asynchronous mode.
 on the clusters architecture (number, capacity calculation power) in the simulated environment, the experimental results
 have demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment
 performance, but also a time saving of up to \np[\%]{40} in asynchronous mode.
@@ -160,26 +160,26 @@ carried out will be presented before some concluding remarks and future works.
 
 As exposed in the introduction, parallel iterative methods are now widely used in many scientific domains. They can be
 classified in three main classes depending on how iterations and communications are managed (for more details readers
 
 As exposed in the introduction, parallel iterative methods are now widely used in many scientific domains. They can be
 classified in three main classes depending on how iterations and communications are managed (for more details readers
-can refer to \cite{bcvc06:ij}). In the \textit{Synchronous Iterations - Synchronous Communications (SISC)} model data
+can refer to~\cite{bcvc06:ij}). In the \textit{Synchronous Iterations~-- Synchronous Communications (SISC)} model data
 are exchanged at the end of each iteration. All the processors must begin the same iteration at the same time and
 are exchanged at the end of each iteration. All the processors must begin the same iteration at the same time and
-important idle times on processors are generated. The \textit{Synchronous Iterations - Asynchronous Communications
+important idle times on processors are generated. The \textit{Synchronous Iterations~-- Asynchronous Communications
 (SIAC)} model can be compared to the previous one except that data required on another processor are sent asynchronously
 i.e.  without stopping current computations. This technique allows to partially overlap communications by computations
 but unfortunately, the overlapping is only partial and important idle times remain.  It is clear that, in a grid
 computing context, where the number of computational nodes is large, heterogeneous and widely distributed, the idle
 times generated by synchronizations are very penalizing. One way to overcome this problem is to use the
 (SIAC)} model can be compared to the previous one except that data required on another processor are sent asynchronously
 i.e.  without stopping current computations. This technique allows to partially overlap communications by computations
 but unfortunately, the overlapping is only partial and important idle times remain.  It is clear that, in a grid
 computing context, where the number of computational nodes is large, heterogeneous and widely distributed, the idle
 times generated by synchronizations are very penalizing. One way to overcome this problem is to use the
-\textit{Asynchronous Iterations - Asynchronous   Communications (AIAC)} model. Here, local computations do not need to
-wait for required data. Processors can then perform their iterations with the data present at that time. Figure
-\ref{fig:aiac} illustrates this model where the gray blocks represent the computation phases, the white spaces the idle
+\textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model. Here, local computations do not need to
+wait for required data. Processors can then perform their iterations with the data present at that time. Figure~\ref{fig:aiac}
+illustrates this model where the gray blocks represent the computation phases, the white spaces the idle
 times and the arrows the communications. With this algorithmic model, the number of iterations required before the
 times and the arrows the communications. With this algorithmic model, the number of iterations required before the
-convergence is generally greater than for the two former classes. But, and as detailed in \cite{bcvc06:ij}, AIAC
+convergence is generally greater than for the two former classes. But, and as detailed in~\cite{bcvc06:ij}, AIAC
 algorithms can significantly reduce overall execution times by suppressing idle times due to synchronizations especially
 in a grid computing context.
 
 \begin{figure}[!t]
   \centering
     \includegraphics[width=8cm]{AIAC.pdf}
 algorithms can significantly reduce overall execution times by suppressing idle times due to synchronizations especially
 in a grid computing context.
 
 \begin{figure}[!t]
   \centering
     \includegraphics[width=8cm]{AIAC.pdf}
-  \caption{The Asynchronous Iterations - Asynchronous Communications model } 
+  \caption{The Asynchronous Iterations~-- Asynchronous Communications model}
   \label{fig:aiac}
 \end{figure}
 
   \label{fig:aiac}
 \end{figure}
 
@@ -202,7 +202,7 @@ iterations and so to very different execution times.
 
 \section{SimGrid}
 
 
 \section{SimGrid}
 
-SimGrid~\cite{casanova+legrand+quinson.2008.simgrid,SimGrid} is a simulation
+SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation
 framework to study the behavior of large-scale distributed systems.  As its name
 says, it emanates from the grid computing community, but is nowadays used to
 study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
 framework to study the behavior of large-scale distributed systems.  As its name
 says, it emanates from the grid computing community, but is nowadays used to
 study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
@@ -328,7 +328,7 @@ and with the addition of the primitive MPI\_Test was needed to avoid a memory fa
 functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
 As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, all declared 
 global variables have been moved to local variables for each subroutine. In fact, global variables generate side effects arising from the concurrent access of 
 functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
 As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, all declared 
 global variables have been moved to local variables for each subroutine. In fact, global variables generate side effects arising from the concurrent access of 
-shared memory used by threads simulating each computing units in the SimGrid architecture. Second, the alignment of certain types of variables such as "long int" had 
+shared memory used by threads simulating each computing units in the SimGrid architecture. Second, the alignment of certain types of variables such as ``long int'' had
 also to be reviewed. Finally, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
 In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
 environment. We have tested in synchronous mode with a simulated platform starting from a modest 2 or 3 clusters grid to a larger configuration like simulating 
 also to be reviewed. Finally, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
 In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
 environment. We have tested in synchronous mode with a simulated platform starting from a modest 2 or 3 clusters grid to a larger configuration like simulating 
@@ -372,13 +372,20 @@ Table~\ref{tab.cluster.2x50} with a matrix size ranging from $N_x = N_y = N_z =
 62 \text{ to } 171$ elements or from $62^{3} = \np{238328}$ to $171^{3} =
 \np{5211000}$ entries.
 
 62 \text{ to } 171$ elements or from $62^{3} = \np{238328}$ to $171^{3} =
 \np{5211000}$ entries.
 
+% use the same column width for the following three tables
+\newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
+\newenvironment{mytable}[1]{% #1: number of columns for data
+  \renewcommand{\arraystretch}{1.3}%
+  \begin{tabular}{|>{\bfseries}r%
+                  |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
+    \end{tabular}}
+
 \begin{table}[!t]
   \centering
   \caption{$2$ clusters, each with $50$ nodes}
   \label{tab.cluster.2x50}
 \begin{table}[!t]
   \centering
   \caption{$2$ clusters, each with $50$ nodes}
   \label{tab.cluster.2x50}
-  \renewcommand{\arraystretch}{1.3}
 
 
-  \begin{tabular}{|>{\bfseries}r|*{12}{c|}}
+  \begin{mytable}{6}
     \hline
     bw
     & 5         & 5         & 5         & 5         & 5         & 50 \\
     \hline
     bw
     & 5         & 5         & 5         & 5         & 5         & 50 \\
@@ -398,11 +405,11 @@ Table~\ref{tab.cluster.2x50} with a matrix size ranging from $N_x = N_y = N_z =
     speedup
     & 0.396     & 0.392     & 0.396     & 0.391     & 0.393     & 0.395 \\
     \hline
     speedup
     & 0.396     & 0.392     & 0.396     & 0.391     & 0.393     & 0.395 \\
     \hline
-  \end{tabular}
+  \end{mytable}
 
   \smallskip
 
 
   \smallskip
 
-  \begin{tabular}{|>{\bfseries}r|*{12}{c|}}
+  \begin{mytable}{6}
     \hline
     bw
     & 50        & 50        & 50        & 50        & 10        & 10 \\
     \hline
     bw
     & 50        & 50        & 50        & 50        & 10        & 10 \\
@@ -422,7 +429,7 @@ Table~\ref{tab.cluster.2x50} with a matrix size ranging from $N_x = N_y = N_z =
     speedup
     & 0.398     & 0.388     & 0.393     & 0.394     & 0.63      & 0.778 \\
     \hline
     speedup
     & 0.398     & 0.388     & 0.393     & 0.394     & 0.63      & 0.778 \\
     \hline
-  \end{tabular}
+  \end{mytable}
 \end{table}
   
 Then we have changed the network configuration using three clusters containing
 \end{table}
   
 Then we have changed the network configuration using three clusters containing
@@ -435,9 +442,8 @@ speedups less than $1$ with a matrix size from $62$ to $100$ elements.
   \centering
   \caption{$3$ clusters, each with $33$ nodes}
   \label{tab.cluster.3x33}
   \centering
   \caption{$3$ clusters, each with $33$ nodes}
   \label{tab.cluster.3x33}
-  \renewcommand{\arraystretch}{1.3}
 
 
-  \begin{tabular}{|>{\bfseries}r|*{6}{c|}}
+  \begin{mytable}{6}
     \hline
     bw
     & 10       & 5        & 4        & 3        & 2        & 6 \\
     \hline
     bw
     & 10       & 5        & 4        & 3        & 2        & 6 \\
@@ -457,10 +463,9 @@ speedups less than $1$ with a matrix size from $62$ to $100$ elements.
     speedup
     & 0.997    & 0.99     & 0.93     & 0.84     & 0.78     & 0.99 \\
     \hline
     speedup
     & 0.997    & 0.99     & 0.93     & 0.84     & 0.78     & 0.99 \\
     \hline
-  \end{tabular}
+  \end{mytable}
 \end{table}
 
 \end{table}
 
-
 In a final step, results of an execution attempt to scale up the three clustered
 configuration but increasing by two hundreds hosts has been recorded in
 Table~\ref{tab.cluster.3x67}.
 In a final step, results of an execution attempt to scale up the three clustered
 configuration but increasing by two hundreds hosts has been recorded in
 Table~\ref{tab.cluster.3x67}.
@@ -469,9 +474,8 @@ Table~\ref{tab.cluster.3x67}.
   \centering
   \caption{3 clusters, each with 66 nodes}
   \label{tab.cluster.3x67}
   \centering
   \caption{3 clusters, each with 66 nodes}
   \label{tab.cluster.3x67}
-  \renewcommand{\arraystretch}{1.3}
 
 
-  \begin{tabular}{|>{\bfseries}r|c|}
+  \begin{mytable}{1}
     \hline
     bw         & 1 \\
     \hline
     \hline
     bw         & 1 \\
     \hline
@@ -485,7 +489,7 @@ Table~\ref{tab.cluster.3x67}.
     \hline
     speedup    & 0.9 \\
     \hline
     \hline
     speedup    & 0.9 \\
     \hline
- \end{tabular}
+ \end{mytable}
 \end{table}
 
 Note that the program was run with the following parameters:
 \end{table}
 
 Note that the program was run with the following parameters:
@@ -540,7 +544,7 @@ matrix size of $62$ elements, equality between the performance of the two modes
 (synchronous and asynchronous) is achieved with an inter cluster of
 \np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency by
 \np[\%]{78} with a matrix size of $100$ points, it was necessary to degrade the
 (synchronous and asynchronous) is achieved with an inter cluster of
 \np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency by
 \np[\%]{78} with a matrix size of $100$ points, it was necessary to degrade the
-inter cluster network bandwidth from 5 to 2 Mbit/s.
+inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
 
 A last attempt was made for a configuration of three clusters but more powerful
 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was
 
 A last attempt was made for a configuration of three clusters but more powerful
 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was