]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections
[hpcc2014.git] / hpcc.tex
index 2523d890140406bacea2fee20458bfba73eafa95..04c540346aa2c1d772aac9c74d7569de61725a16 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -561,7 +561,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
   \end{mytable}
 \end{table}
   
   \end{mytable}
 \end{table}
   
-\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+%\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
 
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
 
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
@@ -666,10 +666,10 @@ that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5
 of one GFlops, an efficiency of about \np[\%]{40} is
 obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
 of one GFlops, an efficiency of about \np[\%]{40} is
 obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
-increasing the matrix size up to 100 elements, it was necessary to increase the
+increasing the matrix size up to $100^3$ elements, it was necessary to increase the
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with
-high external precision of \np{E-11} for a matrix size from 110 to 150 side
+high external precision of \np{E-11} for a matrix size from $110^3$ to $150^3$ side
 elements.
 
 %For the 3 clusters architecture including a total of 100 hosts,
 elements.
 
 %For the 3 clusters architecture including a total of 100 hosts,
@@ -679,8 +679,8 @@ elements.
 %(synchronous and asynchronous) is achieved with an inter cluster of
 %\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
 %inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
 %(synchronous and asynchronous) is achieved with an inter cluster of
 %\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
 %inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
-\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
-  Quelle est la perte de perfs en faisant ça ?}
+%\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
+  %Quelle est la perte de perfs en faisant ça ?}
 
 %A last attempt was made for a configuration of three clusters but more powerful
 %with 200 nodes in total. The convergence with a relative gain around 1.1 was
 
 %A last attempt was made for a configuration of three clusters but more powerful
 %with 200 nodes in total. The convergence with a relative gain around 1.1 was
@@ -704,7 +704,7 @@ reach the following two objectives:
 
 \item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
 
 \item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
-Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method
+Our results have shown that with two distant clusters, the asynchronous multisplitting method is faster to \np[\%]{40} compared to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
 which is not negligible for solving complex practical problems with more 
 and more increasing size.