of one GFlops, an efficiency of about \np[\%]{40} is
obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
of one GFlops, an efficiency of about \np[\%]{40} is
obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By