X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/2cc5590f929bcdb64636969b81f6529f2be6a09e..e9cd120f6825d0fd5af216088a20e3af54b7eac0:/hpcc.tex diff --git a/hpcc.tex b/hpcc.tex index a074868..2434416 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -695,9 +695,11 @@ In this work, we show that SIMGRID is an efficient simulation tool that allows u reach the following three objectives: \begin{enumerate} -\item To have a flexible configurable execution platform resolving the -hard exercise to access to very limited but so solicited physical -resources; +\item To have a flexible configurable execution platform that allows us to + simulate asynchronous iterative algorithm for which execution of all parts of + the code is necessary. Using simulations before real execution is a nice + solution to detect the scalability problems. + \item to ensure the algorithm convergence with a reasonable time and iteration number ; \item and finally and more importantly, to find the correct combination @@ -705,17 +707,18 @@ of the cluster and network specifications permitting to save time in executing the algorithm in asynchronous mode. \end{enumerate} Our results have shown that in certain conditions, asynchronous mode is -speeder up to \np[\%]{40} than executing the algorithm in synchronous mode +speeder up to \np[\%]{40} comparing to the synchronous GMRES method which is not negligible for solving complex practical problems with more and more increasing size. - Several studies have already addressed the performance execution time of +Several studies have already addressed the performance execution time of this class of algorithm. The work presented in this paper has demonstrated an original solution to optimize the use of a simulation tool to run efficiently an iterative parallel algorithm in asynchronous mode in a grid architecture. -\LZK{Perspectives???} +In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. +We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study. \section*{Acknowledgment}