X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/3efa8416208cc62a83dcb1ba7a97707eb62f1dbf..3fa7ab9f6999f6f13a72e4342cfa175e6e74803f:/hpcc.tex?ds=sidebyside diff --git a/hpcc.tex b/hpcc.tex index e4c77d3..edba67f 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -1,3 +1,4 @@ + \documentclass[conference]{IEEEtran} \usepackage[T1]{fontenc} @@ -422,7 +423,7 @@ u =0 \text{~on~} \Gamma =\partial\Omega where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as \begin{equation} \begin{array}{l} -u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z) +u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z), %u(x,y,z)= & \frac{1}{6}\times [u(x-1,y,z) + u(x+1,y,z) + \\ % & u(x,y-1,z) + u(x,y+1,z) + \\ % & u(x,y,z-1) + u(x,y,z+1) - \\ & h^2f(x,y,z)], @@ -646,8 +647,8 @@ Note that the program was run with the following parameters: \item Maximum number of iterations; \item Precisions on the residual error; \item Matrix size $N_x$, $N_y$ and $N_z$; -\item Matrix diagonal value: \np{1.0} (See~(\ref{eq:03})); -\item Matrix off-diagonal value: \np{-1}/\np{6} (See~(\ref{eq:03})); +\item Matrix diagonal value: $6$ (See~(\ref{eq:03})); +\item Matrix off-diagonal value: $-1$; \item Communication mode: asynchronous. \end{itemize}