X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/5cfcf441c759677ded54e6545832e1df1d01431f..3fa7ab9f6999f6f13a72e4342cfa175e6e74803f:/hpcc.tex diff --git a/hpcc.tex b/hpcc.tex index c6b34a2..edba67f 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -1,3 +1,4 @@ + \documentclass[conference]{IEEEtran} \usepackage[T1]{fontenc} @@ -419,17 +420,17 @@ u =0 \text{~on~} \Gamma =\partial\Omega \right. \label{eq:02} \end{equation} -where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. The general iteration scheme of our multisplitting method in a 3D domain using a seven point stencil could be written as +where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as \begin{equation} -\begin{array}{ll} -u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\ - & (u^k(x-1,y,z) + u^k(x+1,y,z) + \\ - & u^k(x,y-1,z) + u^k(x,y+1,z) + \\ - & u^k(x,y,z-1) + u^k(x,y,z+1)), +\begin{array}{l} +u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z), +%u(x,y,z)= & \frac{1}{6}\times [u(x-1,y,z) + u(x+1,y,z) + \\ + % & u(x,y-1,z) + u(x,y+1,z) + \\ + % & u(x,y,z-1) + u(x,y,z+1) - \\ & h^2f(x,y,z)], \end{array} \label{eq:03} \end{equation} -where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. +where $h$ is the distance between two adjacent elements in the spatial discretization scheme and the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. @@ -451,11 +452,11 @@ and with the addition of the primitive MPI\_Test was needed to avoid a memory fa %\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} %\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.} Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation. -As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, the scope of all declared +As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. The scope of all declared global variables have been moved to local to subroutine. Indeed, global variables generate side effects arising from the concurrent access of shared memory used by threads simulating each computing unit in the SimGrid architecture. -Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid. -\AG{compilation or run-time error?} +%Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid. +%\AG{compilation or run-time error?} In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications. @@ -646,8 +647,8 @@ Note that the program was run with the following parameters: \item Maximum number of iterations; \item Precisions on the residual error; \item Matrix size $N_x$, $N_y$ and $N_z$; -\item Matrix diagonal value: \np{1.0} (See~(\ref{eq:03})); -\item Matrix off-diagonal value: \np{-1}/\np{6} (See~(\ref{eq:03})); +\item Matrix diagonal value: $6$ (See~(\ref{eq:03})); +\item Matrix off-diagonal value: $-1$; \item Communication mode: asynchronous. \end{itemize}