X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/737105343d24592705f10585fb9b61184a9c76cb..a1f69a7eed4bce700bca42062355b715b4ad6f9c:/hpcc.tex diff --git a/hpcc.tex b/hpcc.tex index c8619f8..59b4946 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -45,24 +45,29 @@ \author{% \IEEEauthorblockN{% - Charles Emile Ramamonjisoa and - David Laiymani and - Arnaud Giersch and - Lilia Ziane Khodja and - Raphaël Couturier + Charles Emile Ramamonjisoa\IEEEauthorrefmark{1}, + David Laiymani\IEEEauthorrefmark{1}, + Arnaud Giersch\IEEEauthorrefmark{1}, + Lilia Ziane Khodja\IEEEauthorrefmark{2} and + Raphaël Couturier\IEEEauthorrefmark{1} } - \IEEEauthorblockA{% - Femto-ST Institute - DISC Department\\ - Université de Franche-Comté\\ - Belfort\\ - Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr} + \IEEEauthorblockA{\IEEEauthorrefmark{1}% + Femto-ST Institute -- DISC Department\\ + Université de Franche-Comté, + IUT de Belfort-Montbéliard\\ + 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\ + Email: \email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr} + } + \IEEEauthorblockA{\IEEEauthorrefmark{2}% + Inria Bordeaux Sud-Ouest\\ + 200 avenue de la Vieille Tour, 33405 Talence cedex, France \\ + Email: \email{lilia.ziane@inria.fr} } } \maketitle \RC{Ordre des autheurs pas définitif.} -\LZK{Adresse de Lilia: Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talence Cedex, France \\ Email: lilia.ziane@inria.fr} \begin{abstract} ABSTRACT @@ -84,15 +89,14 @@ from the current work, a simulated environment like Simgrid provides accurate results which are difficult or even impossible to obtain in a physical platform by exploiting the flexibility of the simulator on the computing units clusters and the network structure design. Our -experimental outputs showed a saving of up to 40 \% for the algorithm +experimental outputs showed a saving of up to \np[\%]{40} for the algorithm execution time in asynchronous mode compared to the synchronous one with -a residual precision up to E-11. Such successful results open +a residual precision up to \np{E-11}. Such successful results open perspectives on experimentations for running the algorithm on a simulated large scale growing environment and with larger problem size. -Keywords : Algorithm distributed iterative asynchronous simulation -simgrid - +% no keywords for IEEE conferences +% Keywords: Algorithm distributed iterative asynchronous simulation simgrid \end{abstract} \section{Introduction} @@ -373,7 +377,7 @@ For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.c that it was difficult to have a combination which gives an efficiency of asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality between the performance of the two modes (synchronous and asynchronous) is -achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To +achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s. @@ -403,7 +407,7 @@ executing the algorithm in asynchronous mode. \setcounter{numberedCntD}{\theenumi} \end{enumerate} Our results have shown that in certain conditions, asynchronous mode is -speeder up to 40 \% than executing the algorithm in synchronous mode +speeder up to \np[\%]{40} than executing the algorithm in synchronous mode which is not negligible for solving complex practical problems with more and more increasing size.