X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/a1950af3cc5343a88d03a9a7591f6e7833d51d54..71e9a817e3b9fe1daf0e108ff31cdbaba31197ff:/hpcc.tex?ds=sidebyside diff --git a/hpcc.tex b/hpcc.tex index bea95a4..fdd60b2 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -83,7 +83,7 @@ paper, we show that it is interesting to use SimGrid to simulate the behaviors of asynchronous iterative algorithms. For that, we compare the behaviour of a synchronous GMRES algorithm with an asynchronous multisplitting one with simulations which let us easily choose some parameters. Both codes are real MPI -codes ans simulations allow us to see when the asynchronous multisplitting algorithm can be more +codes and simulations allow us to see when the asynchronous multisplitting algorithm can be more efficient than the GMRES one to solve a 3D Poisson problem. @@ -103,7 +103,7 @@ suggests, these algorithms solve a given problem by successive iterations ($X_{n $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}. -Parallelization of such algorithms generally involve the division of the problem +Parallelization of such algorithms generally involves the division of the problem into several \emph{blocks} that will be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new iteration starts and until the approximate solution is reached. These