X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/ac3339a8c244d2a3f928d2c0d3539775b5a04e29..51c03eb8a38bbfba54b1e2fadca7ab7b1db166b3:/hpcc.tex diff --git a/hpcc.tex b/hpcc.tex index d8c9a8c..7d96f2b 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -695,9 +695,11 @@ In this work, we show that SIMGRID is an efficient simulation tool that allows u reach the following three objectives: \begin{enumerate} -\item To have a flexible configurable execution platform resolving the -hard exercise to access to very limited but so solicited physical -resources; +\item To have a flexible configurable execution platform that allows us to + simulate asynchronous iterative algorithm for which execution of all parts of + the code is necessary. Using simulations before real execution is a nice + solution to detect the scalability problems. + \item to ensure the algorithm convergence with a reasonable time and iteration number ; \item and finally and more importantly, to find the correct combination @@ -715,7 +717,7 @@ demonstrated an original solution to optimize the use of a simulation tool to run efficiently an iterative parallel algorithm in asynchronous mode in a grid architecture. -For our futur works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. +In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study. \section*{Acknowledgment}