X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/e0b0623b3df14288688eac62bc06fb36da2a5101..580c1f07165fe15586922daa61ff46ff216c6965:/hpcc.tex?ds=sidebyside diff --git a/hpcc.tex b/hpcc.tex index 0072a6f..11c39db 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -151,8 +151,8 @@ approach of the simulation of AIAC algorithms using a simulation tool (i.e. the SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of asynchronous mode algorithms by comparing their performance with the synchronous mode. More precisely, we had implemented a program for solving large -non-symmetric linear system of equations by numerical method GMRES (Generalized -Minimal Residual) []\AG[]{[]?}\LZK[]{\cite{ref1}}.\LZK{Problème traité dans le papier est symétrique ou asymétrique? (Poisson 3D symétrique?)} We show, that with minor modifications of the +linear system of equations by numerical method GMRES (Generalized +Minimal Residual) \cite{ref1}. We show, that with minor modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC application on different computing architectures. The simulated results we obtained are in line with real results exposed in ??\AG[]{??}.