X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/e51d591723b039f28c649e6b7ca79222b34b0080..a91615879d7d661f352b74c8d4fa5c883f324acf:/hpcc.tex diff --git a/hpcc.tex b/hpcc.tex index a5aeb12..529e9c1 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -692,20 +692,17 @@ elements. \section{Conclusion} The simulation of the execution of parallel asynchronous iterative algorithms on large scale clusters has been presented. In this work, we show that SIMGRID is an efficient simulation tool that allows us to -reach the following three objectives: +reach the following two objectives: \begin{enumerate} -\item To have a flexible configurable execution platform resolving the -hard exercise to access to very limited but so solicited physical -resources; -\item to ensure the algorithm convergence with a reasonable time and -iteration number ; -\item and finally and more importantly, to find the correct combination -of the cluster and network specifications permitting to save time in -executing the algorithm in asynchronous mode. +\item To have a flexible configurable execution platform that allows us to + simulate algorithms for which execution of all parts of + the code is necessary. Using simulations before real executions is a nice + solution to detect potential scalability problems. + +\item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one. \end{enumerate} -Our results have shown that in certain conditions, asynchronous mode is -speeder up to \np[\%]{40} comparing to the synchronous GMRES method +Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method which is not negligible for solving complex practical problems with more and more increasing size.