X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/ee24b6afced350626b57accf9d10690bf9667aca..0465f42aaa2cd6ca1b5a122e6461818f309140c2:/hpcc.tex?ds=inline diff --git a/hpcc.tex b/hpcc.tex index c48f1f6..2bb3997 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -493,7 +493,7 @@ simulates the case of distant clusters linked with long distance network as in g Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above -factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from +factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} = \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. %\AG{Expliquer comment lire les tableaux.} @@ -523,7 +523,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} = power (GFlops) & 1 & 1 & 1 & 1.5 & 1.5 \\ \hline - size $(n^3)$ + size $(N)$ & 62 & 62 & 62 & 100 & 100 \\ \hline Precision @@ -548,7 +548,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} = Power (GFlops) & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ % & 1 & 1.5 \\ \hline - size $(n^3)$ + size $(N)$ & 110 & 120 & 130 & 140 & 150 \\ % & 171 & 171 \\ \hline Precision @@ -647,8 +647,8 @@ Note that the program was run with the following parameters: \begin{itemize} \item Description of the cluster architecture matching the format ; -\item Maximum number of iterations; -\item Precisions on the residual error; +\item Maximum numbers of outer and inner iterations; +\item Outer and inner precisions on the residual error; \item Matrix size $N_x$, $N_y$ and $N_z$; \item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03})); \item Matrix off-diagonal value: $-1$;