X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/f2d52a8e01117d631783d873860e90d32f2bf8d5..64524506d883bc0ba97cb6a424cb576cdb8e4262:/hpcc.tex?ds=sidebyside diff --git a/hpcc.tex b/hpcc.tex index 497ed68..e06c9c5 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -106,15 +106,15 @@ increasing complexity of these requested applications combined with a continuou distributed and parallel algorithms requiring significant hardware resources (grid computing, clusters, broadband network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient parallel algorithms called \emph{numerical iterative algorithms} executed in a distributed environment. As their name -suggests, these algorithm solves a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value +suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods demonstrate the convergence of these algorithms \cite{BT89,Bahi07}. -Parallelization of such algorithms generally involved the division of the problem into several \emph{blocks} that will +Parallelization of such algorithms generally involve the division of the problem into several \emph{blocks} that will be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new iteration starts and until the approximate solution is reached. These parallel computations can be performed either in -\emph{synchronous} mode where a new iteration begin only when all nodes communications are completed, -either \emph{asynchronous} mode where processors can continue independently without or few synchronization points. For +\emph{synchronous} mode where a new iteration begins only when all nodes communications are completed, +or in \emph{asynchronous} mode where processors can continue independently with few or no synchronization points. For instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model \cite{bcvc06:ij}, local computations do not need to wait for required data. Processors can then perform their iterations with the data present at that time. Even if the number of iterations required before the convergence is generally greater than for the @@ -143,9 +143,9 @@ performance with the synchronous mode. More precisely, we had implemented a prog linear system of equations by numerical method GMRES (Generalized Minimal Residual) []. We show, that with minor modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC application on different computing architectures. The simulated results we obtained are in line with real results -exposed in ??. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating -different distributed architectures composed by clusters nodes interconnected by variable speed networks. It has been -permitted to show With selected parameters on the network platforms (bandwidth, latency of inter cluster network) and +exposed in ??\AG[]{??}. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating +different distributed architectures composed by clusters nodes interconnected by variable speed networks. +With selected parameters on the network platforms (bandwidth, latency of inter cluster network) and on the clusters architecture (number, capacity calculation power) in the simulated environment, the experimental results have demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment performance, but also a time saving of up to \np[\%]{40} in asynchronous mode.