X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/f9bb0366521948860427dbe75c159008da521ac3..3357d4486bff13d056f39c12f3852ef9c3dbe45b:/hpcc.tex?ds=inline diff --git a/hpcc.tex b/hpcc.tex index e1d916e..d376194 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -72,6 +72,7 @@ \RC{Ordre des auteurs pas définitif.} \begin{abstract} +\AG{L'abstract est AMHA incompréhensible et ne donne pas envie de lire la suite.} In recent years, the scalability of large-scale implementation in a distributed environment of algorithms becoming more and more complex has always been hampered by the limits of physical computing resources @@ -155,7 +156,7 @@ linear system of equations by numerical method GMRES (Generalized Minimal Residual) \cite{ref1}. We show, that with minor modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC application on different computing architectures. The simulated -results we obtained are in line with real results exposed in ??\AG[]{??}. +results we obtained are in line with real results exposed in ??\AG[]{ref?}. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating different distributed architectures composed by clusters nodes interconnected by variable speed networks. With selected @@ -165,6 +166,9 @@ in the simulated environment, the experimental results have demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment performance, but also a time saving of up to \np[\%]{40} in asynchronous mode. +\AG{Il faudrait revoir la phrase précédente (couper en deux?). Là, on peut + avoir l'impression que le gain de \np[\%]{40} est entre une exécution réelle + et une exécution simulée!} This article is structured as follows: after this introduction, the next section will give a brief description of iterative asynchronous model. Then, the simulation framework SimGrid is presented with the settings to create various @@ -187,7 +191,9 @@ times generated by synchronizations are very penalizing. One way to overcome thi \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model. Here, local computations do not need to wait for required data. Processors can then perform their iterations with the data present at that time. Figure~\ref{fig:aiac} illustrates this model where the gray blocks represent the computation phases, the white spaces the idle -times and the arrows the communications. With this algorithmic model, the number of iterations required before the +times and the arrows the communications. +\AG{There are no ``white spaces'' on the figure.} +With this algorithmic model, the number of iterations required before the convergence is generally greater than for the two former classes. But, and as detailed in~\cite{bcvc06:ij}, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to synchronizations especially in a grid computing context. @@ -252,8 +258,11 @@ with their computing power, the interconnection links with their bandwidth and latency, and the routing strategy. The simulated running time of the application is computed according to these properties. +%%% TODO: add some words+refs about SimGrid's accuracy and scalability.} + \AG{Faut-il ajouter quelque-chose ?} -\CER{Comme tu as décrit la plateforme d'exécution, on peut ajouter éventuellement le fichier XML contenant des hosts dans les clusters formant la grille} +\CER{Comme tu as décrit la plateforme d'exécution, on peut ajouter éventuellement le fichier XML contenant des hosts dans les clusters formant la grille + \AG{Bof.}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Simulation of the multisplitting method} @@ -331,11 +340,27 @@ Algorithm on Figure~\ref{algo:01} shows the main key points of the multisplittin \label{fig:4.1} \end{figure} -The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank 1) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank 1, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster 1 receives from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster 1 broadcasts a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied +The global convergence of the asynchronous multisplitting solver is detected +when the clusters of processors have all converged locally. We implemented the +global convergence detection process as follows. On each cluster a master +processor is designated (for example the processor with rank 1) and masters of +all clusters are interconnected by a virtual unidirectional ring network (see +Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around +the virtual ring from a master processor to another until the global convergence +is achieved. So starting from the cluster with rank 1, each master processor $i$ +sets the token to \textit{True} if the local convergence is achieved or to +\textit{False} otherwise, and sends it to master processor $i+1$. Finally, the +global convergence is detected when the master of cluster 1 receives from the +master of cluster $L$ a token set to \textit{True}. In this case, the master of +cluster 1 broadcasts a stop message to masters of other clusters. In this work, +the local convergence on each cluster $l$ is detected when the following +condition is satisfied \begin{equation*} (k\leq \MI) \text{ or } (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon) \end{equation*} -where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. +where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the +tolerance threshold of the error computed between two successive local solution +$X_l^k$ and $X_l^{k+1}$. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code