X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/fadf3e9c2be61f86ddebab4672ca769096168535..33ff15ea54b83011db5d2392c0e517c0855abce8:/hpcc.tex diff --git a/hpcc.tex b/hpcc.tex index b4d0be3..fc79391 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -320,9 +320,11 @@ \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} -%\usepackage{amsmath} +\usepackage{amsfonts,amssymb} +\usepackage{amsmath} +\usepackage{algorithm} +\usepackage{algpseudocode} %\usepackage{amsthm} -%\usepackage{amsfonts} %\usepackage{graphicx} %\usepackage{xspace} \usepackage[american]{babel} @@ -333,6 +335,14 @@ % et l'affichage correct des URL (commande \url{http://example.com}) %\usepackage{hyperref} +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + + + \begin{document} % @@ -409,9 +419,79 @@ Décrire le modèle asynchrone. Je m'en charge (DL) Décrire SimGrid (Arnaud) -\section{Simulation of the multi-splitting method} -Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid. + + + + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section{Simulation of the multisplitting method} +%Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid. +Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping +\[ +\left(\begin{array}{ccc} +A_{11} & \cdots & A_{1L} \\ +\vdots & \ddots & \vdots\\ +A_{L1} & \cdots & A_{LL} +\end{array} \right) +\times +\left(\begin{array}{c} +X_1 \\ +\vdots\\ +X_L +\end{array} \right) += +\left(\begin{array}{c} +Y_1 \\ +\vdots\\ +Y_L +\end{array} \right)\] +in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,i\in\{1,\ldots,L\}$ $A_{li}$ is a rectangular block of $A$ of size $n_l\times n_i$, $X_l$ and $Y_l$ are sub-vectors of $x$ and $y$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{i} n_i=n$. + +The multisplitting method proceeds by iteration to solve in parallel the linear system by $L$ clusters of processors, in such a way each sub-system +\begin{equation} +\left\{ +\begin{array}{l} +A_{ll}X_l = Y_l \mbox{,~such that}\\ +Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, +\end{array} +\right. +\label{eq:4.1} +\end{equation} +is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. + +\begin{algorithm} +\caption{A multisplitting solver with inner iteration GMRES method} +\begin{algorithmic}[1] +\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess) +\Output $X_l$ (local solution vector)\vspace{0.2cm} +\State Load $A_l$, $B_l$, $x^0$ +\State Initialize the shared vector $\hat{x}=x^0$ +\For {$k=1,2,3,\ldots$ until the global convergence} +\State $x^0=\hat{x}$ +\State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$} +\State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$ +\EndFor + +\Statex + +\Function {InnerSolver}{$x^0$, $k$} +\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$ +\State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess +\State \Return $X_l^k$ +\EndFunction +\end{algorithmic} +\label{algo:01} +\end{algorithm} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + + + + + \section{Experimental results} @@ -650,7 +730,7 @@ The authors would like to thank... % http://www.michaelshell.org/tex/ieeetran/bibtex/ \bibliographystyle{IEEEtran} % argument is your BibTeX string definitions and bibliography database(s) -\bibliography{bib/hpccBib} +\bibliography{hpccBib} % % manually copy in the resultant .bbl file % set second argument of \begin to the number of references