X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/blobdiff_plain/fcdf7fe1956405a4430f148c55b616aa47a3e8af..8795c25e6f799826141cea21050391987f86f3ae:/hpcc.tex?ds=sidebyside diff --git a/hpcc.tex b/hpcc.tex index 220b800..b33be48 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -1,813 +1,747 @@ - -%% bare_conf.tex -%% V1.3 -%% 2007/01/11 -%% by Michael Shell -%% See: -%% http://www.michaelshell.org/ -%% for current contact information. -%% -%% This is a skeleton file demonstrating the use of IEEEtran.cls -%% (requires IEEEtran.cls version 1.7 or later) with an IEEE conference paper. -%% -%% Support sites: -%% http://www.michaelshell.org/tex/ieeetran/ -%% http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/ -%% and -%% http://www.ieee.org/ - -%%************************************************************************* -%% Legal Notice: -%% This code is offered as-is without any warranty either expressed or -%% implied; without even the implied warranty of MERCHANTABILITY or -%% FITNESS FOR A PARTICULAR PURPOSE! -%% User assumes all risk. -%% In no event shall IEEE or any contributor to this code be liable for -%% any damages or losses, including, but not limited to, incidental, -%% consequential, or any other damages, resulting from the use or misuse -%% of any information contained here. -%% -%% All comments are the opinions of their respective authors and are not -%% necessarily endorsed by the IEEE. -%% -%% This work is distributed under the LaTeX Project Public License (LPPL) -%% ( http://www.latex-project.org/ ) version 1.3, and may be freely used, -%% distributed and modified. A copy of the LPPL, version 1.3, is included -%% in the base LaTeX documentation of all distributions of LaTeX released -%% 2003/12/01 or later. -%% Retain all contribution notices and credits. -%% ** Modified files should be clearly indicated as such, including ** -%% ** renaming them and changing author support contact information. ** -%% -%% File list of work: IEEEtran.cls, IEEEtran_HOWTO.pdf, bare_adv.tex, -%% bare_conf.tex, bare_jrnl.tex, bare_jrnl_compsoc.tex -%%************************************************************************* - -% *** Authors should verify (and, if needed, correct) their LaTeX system *** -% *** with the testflow diagnostic prior to trusting their LaTeX platform *** -% *** with production work. IEEE's font choices can trigger bugs that do *** -% *** not appear when using other class files. *** -% The testflow support page is at: -% http://www.michaelshell.org/tex/testflow/ - - - -% Note that the a4paper option is mainly intended so that authors in -% countries using A4 can easily print to A4 and see how their papers will -% look in print - the typesetting of the document will not typically be -% affected with changes in paper size (but the bottom and side margins will). -% Use the testflow package mentioned above to verify correct handling of -% both paper sizes by the user's LaTeX system. -% -% Also note that the "draftcls" or "draftclsnofoot", not "draft", option -% should be used if it is desired that the figures are to be displayed in -% draft mode. -% \documentclass[conference]{IEEEtran} -% Add the compsoc option for Computer Society conferences. -% -% If IEEEtran.cls has not been installed into the LaTeX system files, -% manually specify the path to it like: -% \documentclass[conference]{../sty/IEEEtran} - - - - - -% Some very useful LaTeX packages include: -% (uncomment the ones you want to load) - - -% *** CITATION PACKAGES *** -% -%\usepackage{cite} -% cite.sty was written by Donald Arseneau -% V1.6 and later of IEEEtran pre-defines the format of the cite.sty package -% \cite{} output to follow that of IEEE. Loading the cite package will -% result in citation numbers being automatically sorted and properly -% "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using -% cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's -% \cite will automatically add leading space, if needed. Use cite.sty's -% noadjust option (cite.sty V3.8 and later) if you want to turn this off. -% cite.sty is already installed on most LaTeX systems. Be sure and use -% version 4.0 (2003-05-27) and later if using hyperref.sty. cite.sty does -% not currently provide for hyperlinked citations. -% The latest version can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/cite/ -% The documentation is contained in the cite.sty file itself. - - - - - - -% *** GRAPHICS RELATED PACKAGES *** -% -\ifCLASSINFOpdf - % \usepackage[pdftex]{graphicx} - % declare the path(s) where your graphic files are - % \graphicspath{{../pdf/}{../jpeg/}} - % and their extensions so you won't have to specify these with - % every instance of \includegraphics - % \DeclareGraphicsExtensions{.pdf,.jpeg,.png} -\else - % or other class option (dvipsone, dvipdf, if not using dvips). graphicx - % will default to the driver specified in the system graphics.cfg if no - % driver is specified. - % \usepackage[dvips]{graphicx} - % declare the path(s) where your graphic files are - % \graphicspath{{../eps/}} - % and their extensions so you won't have to specify these with - % every instance of \includegraphics - % \DeclareGraphicsExtensions{.eps} -\fi -% graphicx was written by David Carlisle and Sebastian Rahtz. It is -% required if you want graphics, photos, etc. graphicx.sty is already -% installed on most LaTeX systems. The latest version and documentation can -% be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/required/graphics/ -% Another good source of documentation is "Using Imported Graphics in -% LaTeX2e" by Keith Reckdahl which can be found as epslatex.ps or -% epslatex.pdf at: http://www.ctan.org/tex-archive/info/ -% -% latex, and pdflatex in dvi mode, support graphics in encapsulated -% postscript (.eps) format. pdflatex in pdf mode supports graphics -% in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure -% that all non-photo figures use a vector format (.eps, .pdf, .mps) and -% not a bitmapped formats (.jpeg, .png). IEEE frowns on bitmapped formats -% which can result in "jaggedy"/blurry rendering of lines and letters as -% well as large increases in file sizes. -% -% You can find documentation about the pdfTeX application at: -% http://www.tug.org/applications/pdftex - - - - - -% *** MATH PACKAGES *** -% -%\usepackage[cmex10]{amsmath} -% A popular package from the American Mathematical Society that provides -% many useful and powerful commands for dealing with mathematics. If using -% it, be sure to load this package with the cmex10 option to ensure that -% only type 1 fonts will utilized at all point sizes. Without this option, -% it is possible that some math symbols, particularly those within -% footnotes, will be rendered in bitmap form which will result in a -% document that can not be IEEE Xplore compliant! -% -% Also, note that the amsmath package sets \interdisplaylinepenalty to 10000 -% thus preventing page breaks from occurring within multiline equations. Use: -%\interdisplaylinepenalty=2500 -% after loading amsmath to restore such page breaks as IEEEtran.cls normally -% does. amsmath.sty is already installed on most LaTeX systems. The latest -% version and documentation can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/required/amslatex/math/ - - - - - -% *** SPECIALIZED LIST PACKAGES *** -% -%\usepackage{algorithmic} -% algorithmic.sty was written by Peter Williams and Rogerio Brito. -% This package provides an algorithmic environment fo describing algorithms. -% You can use the algorithmic environment in-text or within a figure -% environment to provide for a floating algorithm. Do NOT use the algorithm -% floating environment provided by algorithm.sty (by the same authors) or -% algorithm2e.sty (by Christophe Fiorio) as IEEE does not use dedicated -% algorithm float types and packages that provide these will not provide -% correct IEEE style captions. The latest version and documentation of -% algorithmic.sty can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/algorithms/ -% There is also a support site at: -% http://algorithms.berlios.de/index.html -% Also of interest may be the (relatively newer and more customizable) -% algorithmicx.sty package by Szasz Janos: -% http://www.ctan.org/tex-archive/macros/latex/contrib/algorithmicx/ - - - - -% *** ALIGNMENT PACKAGES *** -% -%\usepackage{array} -% Frank Mittelbach's and David Carlisle's array.sty patches and improves -% the standard LaTeX2e array and tabular environments to provide better -% appearance and additional user controls. As the default LaTeX2e table -% generation code is lacking to the point of almost being broken with -% respect to the quality of the end results, all users are strongly -% advised to use an enhanced (at the very least that provided by array.sty) -% set of table tools. array.sty is already installed on most systems. The -% latest version and documentation can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/required/tools/ - - -%\usepackage{mdwmath} -%\usepackage{mdwtab} -% Also highly recommended is Mark Wooding's extremely powerful MDW tools, -% especially mdwmath.sty and mdwtab.sty which are used to format equations -% and tables, respectively. The MDWtools set is already installed on most -% LaTeX systems. The lastest version and documentation is available at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/mdwtools/ - - -% IEEEtran contains the IEEEeqnarray family of commands that can be used to -% generate multiline equations as well as matrices, tables, etc., of high -% quality. - - -%\usepackage{eqparbox} -% Also of notable interest is Scott Pakin's eqparbox package for creating -% (automatically sized) equal width boxes - aka "natural width parboxes". -% Available at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/eqparbox/ - - - - - -% *** SUBFIGURE PACKAGES *** -%\usepackage[tight,footnotesize]{subfigure} -% subfigure.sty was written by Steven Douglas Cochran. This package makes it -% easy to put subfigures in your figures. e.g., "Figure 1a and 1b". For IEEE -% work, it is a good idea to load it with the tight package option to reduce -% the amount of white space around the subfigures. subfigure.sty is already -% installed on most LaTeX systems. The latest version and documentation can -% be obtained at: -% http://www.ctan.org/tex-archive/obsolete/macros/latex/contrib/subfigure/ -% subfigure.sty has been superceeded by subfig.sty. - - - -%\usepackage[caption=false]{caption} -%\usepackage[font=footnotesize]{subfig} -% subfig.sty, also written by Steven Douglas Cochran, is the modern -% replacement for subfigure.sty. However, subfig.sty requires and -% automatically loads Axel Sommerfeldt's caption.sty which will override -% IEEEtran.cls handling of captions and this will result in nonIEEE style -% figure/table captions. To prevent this problem, be sure and preload -% caption.sty with its "caption=false" package option. This is will preserve -% IEEEtran.cls handing of captions. Version 1.3 (2005/06/28) and later -% (recommended due to many improvements over 1.2) of subfig.sty supports -% the caption=false option directly: -%\usepackage[caption=false,font=footnotesize]{subfig} -% -% The latest version and documentation can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/subfig/ -% The latest version and documentation of caption.sty can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/caption/ - - - - -% *** FLOAT PACKAGES *** -% -%\usepackage{fixltx2e} -% fixltx2e, the successor to the earlier fix2col.sty, was written by -% Frank Mittelbach and David Carlisle. This package corrects a few problems -% in the LaTeX2e kernel, the most notable of which is that in current -% LaTeX2e releases, the ordering of single and double column floats is not -% guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a -% single column figure to be placed prior to an earlier double column -% figure. The latest version and documentation can be found at: -% http://www.ctan.org/tex-archive/macros/latex/base/ - - - -%\usepackage{stfloats} -% stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e -% the ability to do double column floats at the bottom of the page as well -% as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in -% LaTeX2e). It also provides a command: -%\fnbelowfloat -% to enable the placement of footnotes below bottom floats (the standard -% LaTeX2e kernel puts them above bottom floats). This is an invasive package -% which rewrites many portions of the LaTeX2e float routines. It may not work -% with other packages that modify the LaTeX2e float routines. The latest -% version and documentation can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/sttools/ -% Documentation is contained in the stfloats.sty comments as well as in the -% presfull.pdf file. Do not use the stfloats baselinefloat ability as IEEE -% does not allow \baselineskip to stretch. Authors submitting work to the -% IEEE should note that IEEE rarely uses double column equations and -% that authors should try to avoid such use. Do not be tempted to use the -% cuted.sty or midfloat.sty packages (also by Sigitas Tolusis) as IEEE does -% not format its papers in such ways. - - - - - -% *** PDF, URL AND HYPERLINK PACKAGES *** -% -%\usepackage{url} -% url.sty was written by Donald Arseneau. It provides better support for -% handling and breaking URLs. url.sty is already installed on most LaTeX -% systems. The latest version can be obtained at: -% http://www.ctan.org/tex-archive/macros/latex/contrib/misc/ -% Read the url.sty source comments for usage information. Basically, -% \url{my_url_here}. - -% *** Do not adjust lengths that control margins, column widths, etc. *** -% *** Do not use packages that alter fonts (such as pslatex). *** -% There should be no need to do such things with IEEEtran.cls V1.6 and later. -% (Unless specifically asked to do so by the journal or conference you plan -% to submit to, of course. ) - - \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsfonts,amssymb} \usepackage{amsmath} -\usepackage{algorithm} +%\usepackage{algorithm} \usepackage{algpseudocode} %\usepackage{amsthm} \usepackage{graphicx} -%\usepackage{xspace} \usepackage[american]{babel} % Extension pour les liens intra-documents (tagged PDF) % et l'affichage correct des URL (commande \url{http://example.com}) %\usepackage{hyperref} +\usepackage{url} +\DeclareUrlCommand\email{\urlstyle{same}} + +\usepackage[autolanguage,np]{numprint} +\AtBeginDocument{% + \renewcommand*\npunitcommand[1]{\text{#1}} + \npthousandthpartsep{}} + +\usepackage{xspace} +\usepackage[textsize=footnotesize]{todonotes} +\newcommand{\AG}[2][inline]{% + \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace} +\newcommand{\DL}[2][inline]{% + \todo[color=yellow!50,#1]{\sffamily\textbf{DL:} #2}\xspace} +\newcommand{\LZK}[2][inline]{% + \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace} +\newcommand{\RC}[2][inline]{% + \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace} +\newcommand{\CER}[2][inline]{% + \todo[color=pink!10,#1]{\sffamily\textbf{CER:} #2}\xspace} + \algnewcommand\algorithmicinput{\textbf{Input:}} \algnewcommand\Input{\item[\algorithmicinput]} \algnewcommand\algorithmicoutput{\textbf{Output:}} \algnewcommand\Output{\item[\algorithmicoutput]} - - +\newcommand{\MI}{\mathit{MaxIter}} +\newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}} \begin{document} -% -% paper title -% can use linebreaks \\ within to get better formatting as desired -\title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid} - - -% author names and affiliations -% use a multiple column layout for up to three different -% affiliations -\author{\IEEEauthorblockN{Raphaël Couturier and Arnaud Giersch and David Laiymani and Charles Emile Ramamonjisoa} -\IEEEauthorblockA{Femto-ST Institute - DISC Department\\ -Université de Franche-Comté\\ -Belfort\\ -Email: raphael.couturier@univ-fcomte.fr} -%\and -%\IEEEauthorblockN{Arnaud Giersch} -%\IEEEauthorblockA{Twentieth Century Fox\\ -%Springfield, USA\\ -%Email: homer@thesimpsons.com} -%\and -%\IEEEauthorblockN{James Kirk\\ and Montgomery Scott} -%\IEEEauthorblockA{Starfleet Academy\\ -%San Francisco, California 96678-2391\\ -%Telephone: (800) 555--1212\\ -%Fax: (888) 555--1212 -} - +\title{Simulation of Asynchronous Iterative Algorithms Using SimGrid} + +\author{% + \IEEEauthorblockN{% + Charles Emile Ramamonjisoa\IEEEauthorrefmark{1}, + Lilia Ziane Khodja\IEEEauthorrefmark{2}, + David Laiymani\IEEEauthorrefmark{1}, + Arnaud Giersch\IEEEauthorrefmark{1} and + Raphaël Couturier\IEEEauthorrefmark{1} + } + \IEEEauthorblockA{\IEEEauthorrefmark{1}% + Femto-ST Institute -- DISC Department\\ + Université de Franche-Comté, + IUT de Belfort-Montbéliard\\ + 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\ + Email: \email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr} + } + \IEEEauthorblockA{\IEEEauthorrefmark{2}% + Inria Bordeaux Sud-Ouest\\ + 200 avenue de la Vieille Tour, 33405 Talence cedex, France \\ + Email: \email{lilia.ziane@inria.fr} + } +} -% make the title area \maketitle - \begin{abstract} -%\boldmath -The abstract goes here. -\end{abstract} -% IEEEtran.cls defaults to using nonbold math in the Abstract. -% This preserves the distinction between vectors and scalars. However, -% if the conference you are submitting to favors bold math in the abstract, -% then you can use LaTeX's standard command \boldmath at the very start -% of the abstract to achieve this. Many IEEE journals/conferences frown on -% math in the abstract anyway. - -% no keywords - - - - -% For peer review papers, you can put extra information on the cover -% page as needed: -% \ifCLASSOPTIONpeerreview -% \begin{center} \bfseries EDICS Category: 3-BBND \end{center} -% \fi -% -% For peerreview papers, this IEEEtran command inserts a page break and -% creates the second title. It will be ignored for other modes. -\IEEEpeerreviewmaketitle - +Synchronous iterative algorithms are often less scalable than asynchronous +iterative ones. Performing large scale experiments with different kind of +network parameters is not easy because with supercomputers such parameters are +fixed. So one solution consists in using simulations first in order to analyze +what parameters could influence or not the behaviors of an algorithm. In this +paper, we show that it is interesting to use SimGrid to simulate the behaviors +of asynchronous iterative algorithms. For that, we compare the behaviour of a +synchronous GMRES algorithm with an asynchronous multisplitting one with +simulations in which we choose some parameters. Both codes are real MPI +codes. Simulations allow us to see when the multisplitting algorithm can be more +efficient than the GMRES one to solve a 3D Poisson problem. + + +% no keywords for IEEE conferences +% Keywords: Algorithm distributed iterative asynchronous simulation SimGrid +\end{abstract} \section{Introduction} -Parallel computing and high performance computing (HPC) are becoming -more and more imperative for solving various problems raised by -researchers on various scientific disciplines but also by industrial in -the field. Indeed, the increasing complexity of these requested -applications combined with a continuous increase of their sizes lead to -write distributed and parallel algorithms requiring significant hardware -resources ( grid computing , clusters, broadband network ,etc... ) but -also a non- negligible CPU execution time. We consider in this paper a -class of highly efficient parallel algorithms called iterative executed -in a distributed environment. As their name suggests, these algorithm -solves a given problem that might be NP- complete complex by successive -iterations (X$_{n +1 }$= f (X$_{n}$) ) from an initial value X -$_{0}$ to find an approximate value X* of the solution with a very low -residual error. Several well-known methods demonstrate the convergence -of these algorithms. Generally, to reduce the complexity and the -execution time, the problem is divided into several "pieces" that will -be solved in parallel on multiple processing units. The latter will -communicate each intermediate results before a new iteration starts -until the approximate solution is reached. These distributed parallel -computations can be performed either in "synchronous" communication mode -where a new iteration begin only when all nodes communications are -completed, either "asynchronous" mode where processors can continue -independently without or few synchronization points. Despite the -effectiveness of iterative approach, a major drawback of the method is -the requirement of huge resources in terms of computing capacity, -storage and high speed communication network. Indeed, limited physical -resources are blocking factors for large-scale deployment of parallel -algorithms. - -In recent years, the use of a simulation environment to execute parallel -iterative algorithms found some interests in reducing the highly cost of -access to computing resources: (1) for the applications development life -cycle and in code debugging (2) and in production to get results in a -reasonable execution time with a simulated infrastructure not accessible -with physical resources. Indeed, the launch of distributed iterative -asynchronous algorithms to solve a given problem on a large-scale -simulated environment challenges to find optimal configurations giving -the best results with a lowest residual error and in the best of -execution time. According our knowledge, no testing of large-scale -simulation of the class of algorithm solving to achieve real results has -been undertaken to date. We had in the scope of this work implemented a -program for solving large non-symmetric linear system of equations by -numerical method GMRES (Generalized Minimal Residual ) in the simulation -environment Simgrid . The simulated platform had allowed us to launch -the application from a modest computing infrastructure by simulating -different distributed architectures composed by clusters nodes -interconnected by variable speed networks. In addition, it has been -permitted to show the effectiveness of asynchronous mode algorithm by -comparing its performance with the synchronous mode time. With selected -parameters on the network platforms (bandwidth, latency of inter cluster -network) and on the clusters architecture (number, capacity calculation -power) in the simulated environment , the experimental results have -demonstrated not only the algorithm convergence within a reasonable time -compared with the physical environment performance, but also a time -saving of up to 40 \% in asynchronous mode. - -This article is structured as follows: after this introduction, the next -section will give a brief description of iterative asynchronous model. -Then, the simulation framework SIMGRID will be presented with the -settings to create various distributed architectures. The algorithm of -the multi -splitting method used by GMRES written with MPI primitives -and its adaptation to Simgrid with SMPI (Simulation MPI ) will be in the -next section . At last, the experiments results carried out will be -presented before the conclusion which we will announce the opening of -our future work after the results. - -\section{The asynchronous iteration model} +Parallel computing and high performance computing (HPC) are becoming more and more imperative for solving various +problems raised by researchers on various scientific disciplines but also by industrial in the field. Indeed, the +increasing complexity of these requested applications combined with a continuous increase of their sizes lead to write +distributed and parallel algorithms requiring significant hardware resources (grid computing, clusters, broadband +network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient +parallel algorithms called \emph{iterative algorithms} executed in a distributed environment. As their name +suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value +$X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods +demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}. + +Parallelization of such algorithms generally involve the division of the problem into several \emph{blocks} that will +be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new +iteration starts and until the approximate solution is reached. These parallel computations can be performed either in +\emph{synchronous} mode where a new iteration begins only when all nodes communications are completed, +or in \emph{asynchronous} mode where processors can continue independently with few or no synchronization points. For +instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model~\cite{bcvc06:ij}, local +computations do not need to wait for required data. Processors can then perform their iterations with the data present +at that time. Even if the number of iterations required before the convergence is generally greater than for the +synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to +synchronizations especially in a grid computing context (see~\cite{Bahi07} for more details). + +Parallel (synchronous or asynchronous) applications may have different +configuration and deployment requirements. Quantifying their resource +allocation policies and application scheduling algorithms in grid computing +environments under varying load, CPU power and network speeds is very costly, +very labor intensive and very time +consuming~\cite{Calheiros:2011:CTM:1951445.1951450}. The case of AIAC +algorithms is even more problematic since they are very sensible to the +execution environment context. For instance, variations in the network bandwidth +(intra and inter-clusters), in the number and the power of nodes, in the number +of clusters\dots{} can lead to very different number of iterations and so to +very different execution times. Then, it appears that the use of simulation +tools to explore various platform scenarios and to run large numbers of +experiments quickly can be very promising. In this way, the use of a simulation +environment to execute parallel iterative algorithms found some interests in +reducing the highly cost of access to computing resources: (1) for the +applications development life cycle and in code debugging (2) and in production +to get results in a reasonable execution time with a simulated infrastructure +not accessible with physical resources. Indeed, the launch of distributed +iterative asynchronous algorithms to solve a given problem on a large-scale +simulated environment challenges to find optimal configurations giving the best +results with a lowest residual error and in the best of execution time. + + +To our knowledge, there is no existing work on the large-scale simulation of a +real AIAC application. {\bf The contribution of the present paper can be + summarised in two main points}. First we give a first approach of the +simulation of AIAC algorithms using a simulation tool (i.e. the SimGrid +toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of the +asynchronous multisplitting algorithm by comparing its performance with the +synchronous GMRES (Generalized Minimal Residual) \cite{ref1}. Both these codes +can be used to solve large linear systems. In this paper, we focus on a 3D +Poisson problem. We show, that with minor modifications of the initial MPI +code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC +application on different computing architectures. +% The simulated results we +%obtained are in line with real results exposed in ??\AG[]{ref?}. +SimGrid had allowed us to launch the application from a modest computing +infrastructure by simulating different distributed architectures composed by +clusters nodes interconnected by variable speed networks. Parameters of the +network platforms are the bandwidth and the latency of inter cluster +network. Parameters on the cluster's architecture are the number of machines and +the computation power of a machine. Simulations show that the asynchronous +multisplitting algorithm can solve the 3D Poisson problem approximately twice +faster than GMRES with two distant clusters. + + + +This article is structured as follows: after this introduction, the next section +will give a brief description of iterative asynchronous model. Then, the +simulation framework SimGrid is presented with the settings to create various +distributed architectures. Then, the multisplitting method is presented, it is +based on GMRES to solve each block obtained of the splitting. This code is +written with MPI primitives and its adaptation to SimGrid with SMPI (Simulated +MPI) is detailed in the next section. At last, the simulation results carried +out will be presented before some concluding remarks and future works. -Décrire le modèle asynchrone. Je m'en charge (DL) - -\section{SimGrid} + +\section{Motivations and scientific context} + +As exposed in the introduction, parallel iterative methods are now widely used +in many scientific domains. They can be classified in three main classes +depending on how iterations and communications are managed (for more details +readers can refer to~\cite{bcvc06:ij}). In the \textit{Synchronous Iterations~-- + Synchronous Communications (SISC)} model data are exchanged at the end of each +iteration. All the processors must begin the same iteration at the same time and +important idle times on processors are generated. The \textit{Synchronous + Iterations~-- Asynchronous Communications (SIAC)} model can be compared to the +previous one except that data required on another processor are sent +asynchronously i.e. without stopping current computations. This technique +allows to partially overlap communications by computations but unfortunately, +the overlapping is only partial and important idle times remain. It is clear +that, in a grid computing context, where the number of computational nodes is +large, heterogeneous and widely distributed, the idle times generated by +synchronizations are very penalizing. One way to overcome this problem is to use +the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} +model. Here, local computations do not need to wait for required +data. Processors can then perform their iterations with the data present at that +time. Figure~\ref{fig:aiac} illustrates this model where the gray blocks +represent the computation phases. With this algorithmic model, the number of +iterations required before the convergence is generally greater than for the two +former classes. But, and as detailed in~\cite{bcvc06:ij}, AIAC algorithms can +significantly reduce overall execution times by suppressing idle times due to +synchronizations especially in a grid computing context. +%\LZK{Répétition par rapport à l'intro} + +\begin{figure}[!t] + \centering + \includegraphics[width=8cm]{AIAC.pdf} + \caption{The Asynchronous Iterations~-- Asynchronous Communications model} + \label{fig:aiac} +\end{figure} + +\RC{Je serais partant de virer AIAC et laisser asynchronous algorithms... à voir} + +%% It is very challenging to develop efficient applications for large scale, +%% heterogeneous and distributed platforms such as computing grids. Researchers and +%% engineers have to develop techniques for maximizing application performance of +%% these multi-cluster platforms, by redesigning the applications and/or by using +%% novel algorithms that can account for the composite and heterogeneous nature of +%% the platform. Unfortunately, the deployment of such applications on these very +%% large scale systems is very costly, labor intensive and time consuming. In this +%% context, it appears that the use of simulation tools to explore various platform +%% scenarios at will and to run enormous numbers of experiments quickly can be very +%% promising. Several works\dots{} + +%% \AG{Several works\dots{} what?\\ +% Le paragraphe suivant se trouve déjà dans l'intro ?} +In the context of asynchronous algorithms, the number of iterations to reach the +convergence depends on the delay of messages. With synchronous iterations, the +number of iterations is exactly the same than in the sequential mode (if the +parallelization process does not change the algorithm). So the difficulty with +asynchronous algorithms comes from the fact it is necessary to run the algorithm +with real data. In fact, from an execution to another the order of messages will +change and the number of iterations to reach the convergence will also change. +According to all the parameters of the platform (number of nodes, power of +nodes, inter and intra clusrters bandwith and latency, ....) and of the +algorithm (number of splitting with the multisplitting algorithm), the +multisplitting code will obtain the solution more or less quickly. Or course, +the GMRES method also depends of the same parameters. As it is difficult to have +access to many clusters, grids or supercomputers with many different network +parameters, it is interesting to be able to simulate the behaviors of +asynchronous iterative algoritms before being able to runs real experiments. -Décrire SimGrid (Arnaud) +\section{SimGrid} +SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation +framework to study the behavior of large-scale distributed systems. As its name +says, it emanates from the grid computing community, but is nowadays used to +study grids, clouds, HPC or peer-to-peer systems. The early versions of SimGrid +date from 1999, but it's still actively developed and distributed as an open +source software. Today, it's one of the major generic tools in the field of +simulation for large-scale distributed systems. + +SimGrid provides several programming interfaces: MSG to simulate Concurrent +Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to +run real applications written in MPI~\cite{MPI}. Apart from the native C +interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming +languages. SMPI is the interface that has been used for the work exposed in +this paper. The SMPI interface implements about \np[\%]{80} of the MPI 2.0 +standard~\cite{bedaride:hal-00919507}, and supports applications written in C or +Fortran, with little or no modifications. + +Within SimGrid, the execution of a distributed application is simulated on a +single machine. The application code is really executed, but some operations +like the communications are intercepted, and their running time is computed +according to the characteristics of the simulated execution platform. The +description of this target platform is given as an input for the execution, by +the mean of an XML file. It describes the properties of the platform, such as +the computing nodes with their computing power, the interconnection links with +their bandwidth and latency, and the routing strategy. The simulated running +time of the application is computed according to these properties. + +To compute the durations of the operations in the simulated world, and to take +into account resource sharing (e.g. bandwidth sharing between competing +communications), SimGrid uses a fluid model. This allows to run relatively fast +simulations, while still keeping accurate +results~\cite{bedaride:hal-00919507,tomacs13}. Moreover, depending on the +simulated application, SimGrid/SMPI allows to skip long lasting computations and +to only take their duration into account. When the real computations cannot be +skipped, but the results have no importance for the simulation results, there is +also the possibility to share dynamically allocated data structures between +several simulated processes, and thus to reduce the whole memory consumption. +These two techniques can help to run simulations at a very large scale. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Simulation of the multisplitting method} %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid. -Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping -\[ -\left(\begin{array}{ccc} -A_{11} & \cdots & A_{1L} \\ -\vdots & \ddots & \vdots\\ -A_{L1} & \cdots & A_{LL} -\end{array} \right) -\times -\left(\begin{array}{c} -X_1 \\ -\vdots\\ -X_L -\end{array} \right) -= -\left(\begin{array}{c} -Y_1 \\ -\vdots\\ -Y_L -\end{array} \right)\] -in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,i\in\{1,\ldots,L\}$ $A_{li}$ is a rectangular block of $A$ of size $n_l\times n_i$, $X_l$ and $Y_l$ are sub-vectors of $x$ and $y$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{i} n_i=n$. - -The multisplitting method proceeds by iteration to solve in parallel the linear system by $L$ clusters of processors, in such a way each sub-system +Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping +\begin{equation*} + \left(\begin{array}{ccc} + A_{11} & \cdots & A_{1L} \\ + \vdots & \ddots & \vdots\\ + A_{L1} & \cdots & A_{LL} + \end{array} \right) + \times + \left(\begin{array}{c} + X_1 \\ + \vdots\\ + X_L + \end{array} \right) + = + \left(\begin{array}{c} + B_1 \\ + \vdots\\ + B_L + \end{array} \right) +\end{equation*} +in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ +are assigned to one cluster, where for all $\ell,m\in\{1,\ldots,L\}$, $A_{\ell + m}$ is a rectangular block of $A$ of size $n_\ell\times n_m$, $X_\ell$ and +$B_\ell$ are sub-vectors of $x$ and $b$, respectively, of size $n_\ell$ each, +and $\sum_{\ell} n_\ell=\sum_{m} n_m=n$. + +The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system \begin{equation} -\left\{ -\begin{array}{l} -A_{ll}X_l = Y_l \mbox{,~such that}\\ -Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, -\end{array} -\right. -\label{eq:4.1} + \label{eq:4.1} + \left\{ + \begin{array}{l} + A_{\ell\ell}X_\ell = Y_\ell \text{, such that}\\ + Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\ m\neq \ell}}^{L}A_{\ell m}X_m + \end{array} + \right. \end{equation} -is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. - -\begin{algorithm} -\caption{A multisplitting solver with inner iteration GMRES method} +is solved independently by a cluster and communications are required to update +the right-hand side sub-vector $Y_\ell$, such that the sub-vectors $X_m$ +represent the data dependencies between the clusters. As each sub-system +(\ref{eq:4.1}) is solved in parallel by a cluster of processors, our +multisplitting method uses an iterative method as an inner solver which is +easier to parallelize and more scalable than a direct method. In this work, we +use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most +used iterative method by many researchers. + +\begin{figure}[!t] + %%% IEEE instructions forbid to use an algorithm environment here, use figure + %%% instead \begin{algorithmic}[1] -\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess) -\Output $X_l$ (local solution vector)\vspace{0.2cm} -\State Load $A_l$, $B_l$, $x^0$ -\State Initialize the shared vector $\hat{x}=x^0$ -\For {$k=1,2,3,\ldots$ until the global convergence} -\State $x^0=\hat{x}$ -\State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$} -\State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$ +\Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector) +\Output $X_\ell$ (solution sub-vector)\medskip + +\State Load $A_\ell$, $B_\ell$ +\State Set the initial guess $x^0$ +\For {$k=0,1,2,\ldots$ until the global convergence} +\State Restart outer iteration with $x^0=x^k$ +\State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$} +\State\label{algo:01:send} Send shared elements of $X_\ell^{k+1}$ to neighboring clusters +\State\label{algo:01:recv} Receive shared elements in $\{X_m^{k+1}\}_{m\neq \ell}$ \EndFor \Statex \Function {InnerSolver}{$x^0$, $k$} -\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$ -\State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess -\State \Return $X_l^k$ +\State Compute local right-hand side $Y_\ell$: + \begin{equation*} + Y_\ell = B_\ell - \sum\nolimits^L_{\substack{m=1\\ m\neq \ell}}A_{\ell m}X_m^0 + \end{equation*} +\State Solving sub-system $A_{\ell\ell}X_\ell^k=Y_\ell$ with the parallel GMRES method +\State \Return $X_\ell^k$ \EndFunction \end{algorithmic} +\caption{A multisplitting solver with GMRES method} \label{algo:01} -\end{algorithm} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - - +\end{figure} + +Algorithm on Figure~\ref{algo:01} shows the main key points of the +multisplitting method to solve a large sparse linear system. This algorithm is +based on an outer-inner iteration method where the parallel synchronous GMRES +method is used to solve the inner iteration. It is executed in parallel by each +cluster of processors. For all $\ell,m\in\{1,\ldots,L\}$, the matrices and +vectors with the subscript $\ell$ represent the local data for cluster $\ell$, +while $\{A_{\ell m}\}_{m\neq \ell}$ are off-diagonal matrices of sparse matrix +$A$ and $\{X_m\}_{m\neq \ell}$ contain vector elements of solution $x$ shared +with neighboring clusters. At every outer iteration $k$, asynchronous +communications are performed between processors of the local cluster and those +of distant clusters (lines~\ref{algo:01:send} and~\ref{algo:01:recv} in +Figure~\ref{algo:01}). The shared vector elements of the solution $x$ are +exchanged by message passing using MPI non-blocking communication routines. + +\begin{figure}[!t] +\centering + \includegraphics[width=60mm,keepaspectratio]{clustering} +\caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.} +\label{fig:4.1} +\end{figure} + +The global convergence of the asynchronous multisplitting solver is detected +when the clusters of processors have all converged locally. We implemented the +global convergence detection process as follows. On each cluster a master +processor is designated (for example the processor with rank 1) and masters of +all clusters are interconnected by a virtual unidirectional ring network (see +Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around +the virtual ring from a master processor to another until the global convergence +is achieved. So starting from the cluster with rank 1, each master processor $i$ +sets the token to \textit{True} if the local convergence is achieved or to +\textit{False} otherwise, and sends it to master processor $i+1$. Finally, the +global convergence is detected when the master of cluster 1 receives from the +master of cluster $L$ a token set to \textit{True}. In this case, the master of +cluster 1 broadcasts a stop message to masters of other clusters. In this work, +the local convergence on each cluster $\ell$ is detected when the following +condition is satisfied +\begin{equation*} + (k\leq \MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon) +\end{equation*} +where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the +tolerance threshold of the error computed between two successive local solution +$X_\ell^k$ and $X_\ell^{k+1}$. + + + +In this paper, we solve the 3D Poisson problem whose the mathematical model is +\begin{equation} +\left\{ +\begin{array}{l} +\nabla^2 u = f \text{~in~} \Omega \\ +u =0 \text{~on~} \Gamma =\partial\Omega +\end{array} +\right. +\label{eq:02} +\end{equation} +where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. The general iteration scheme of our multisplitting method in a 3D domain using a seven point stencil could be written as +\begin{equation} +\begin{array}{ll} +u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\ + & (u^k(x-1,y,z) + u^k(x+1,y,z) + \\ + & u^k(x,y-1,z) + u^k(x,y+1,z) + \\ + & u^k(x,y,z-1) + u^k(x,y,z+1)), +\end{array} +\label{eq:03} +\end{equation} +where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. +The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. +\begin{figure}[!t] +\centering + \includegraphics[width=80mm,keepaspectratio]{partition} +\caption{Example of the 3D data partitioning between two clusters of processors.} +\label{fig:4.2} +\end{figure} -\section{Experimental results} -When the ``real'' application runs in the simulation environment and produces -the expected results, varying the input parameters and the program arguments -allows us to compare outputs from the code execution. We have noticed from this -study that the results depend on the following parameters: (1) at the network -level, we found that the most critical values are the bandwidth (bw) and the -network latency (lat). (2) Hosts power (GFlops) can also influence on the -results. And finally, (3) when submitting job batches for execution, the -arguments values passed to the program like the maximum number of iterations or -the ``external'' precision are critical to ensure not only the convergence of the -algorithm but also to get the main objective of the experimentation of the -simulation in having an execution time in asynchronous less than in synchronous -mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution -time in synchronous mode / Execution time in asynchronous mode). +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code +debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous +mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions +and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm. +%\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} +%\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.} +Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation. +As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, the scope of all declared +global variables have been moved to local to subroutine. Indeed, global variables generate side effects arising from the concurrent access of +shared memory used by threads simulating each computing unit in the SimGrid architecture. +Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid. +\AG{compilation or run-time error?} +In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real +environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications. + + + +\section{Simulation results} + +When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input +parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this +study that the results depend on the following parameters: +\begin{itemize} +\item At the network level, we found that the most critical values are the + bandwidth and the network latency. +\item Hosts processors power (GFlops) can also influence on the results. +\item Finally, when submitting job batches for execution, the arguments values + passed to the program like the maximum number of iterations or the precision are critical. They allow us to ensure not only the convergence of the + algorithm but also to get the main objective in getting an execution time in asynchronous communication less than in + synchronous mode. The ratio between the execution time of synchronous + compared to the asynchronous mode ($t_\text{sync} / t_\text{async}$) is defined as the \emph{relative gain}. So, + our objective running the algorithm in SimGrid is to obtain a relative gain + greater than 1. +\end{itemize} -A priori, obtaining a speedup less than 1 would be difficult in a local area -network configuration where the synchronous mode will take advantage on the rapid -exchange of information on such high-speed links. Thus, the methodology adopted -was to launch the application on clustered network. In this last configuration, -degrading the inter-cluster network performance will "penalize" the synchronous -mode allowing to get a speedup lower than 1. This action simulates the case of -clusters linked with long distance network like Internet. +A priori, obtaining a relative gain greater than 1 would be difficult in a local +area network configuration where the synchronous mode will take advantage on the +rapid exchange of information on such high-speed links. Thus, the methodology +adopted was to launch the application on a clustered network. In this +configuration, degrading the inter-cluster network performance will penalize the +synchronous mode allowing to get a relative gain greater than 1. This action +simulates the case of distant clusters linked with long distance network as in grid computing context. + + +% As a first step, +The algorithm was run on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above +factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The algorithm convergence with a 3D +matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from +$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} = +\text{\np{3375000}}$ entries), is obtained in asynchronous in average 2.5 times faster than in the synchronous mode. +\AG{Expliquer comment lire les tableaux.} +\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires} +% use the same column width for the following three tables +\newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}} +\newenvironment{mytable}[1]{% #1: number of columns for data + \renewcommand{\arraystretch}{1.3}% + \begin{tabular}{|>{\bfseries}r% + |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{% + \end{tabular}} + +\begin{table}[!t] + \centering + \caption{2 clusters, each with 50 nodes} + \label{tab.cluster.2x50} -As a first step, the algorithm was run on a network consisting of two clusters -containing fifty hosts each, totaling one hundred hosts. Various combinations of -the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size -ranging from Nx = Ny = Nz = 62 to 171 elements or from 62$^{3}$ = 238328 to -171$^{3}$ = 5,211,000 entries. + \begin{mytable}{5} + \hline + bandwidth (Mbit/s) + & 5 & 5 & 5 & 5 & 5 \\ + \hline + latency (ms) + & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 \\ + \hline + power (GFlops) + & 1 & 1 & 1 & 1.5 & 1.5 \\ + \hline + size $(n^3)$ + & 62 & 62 & 62 & 100 & 100 \\ + \hline + Precision + & \np{E-5} & \np{E-8} & \np{E-9} & \np{E-11} & \np{E-11} \\ + \hline + \hline + Relative gain + & 2.52 & 2.55 & 2.52 & 2.57 & 2.54 \\ + \hline + \end{mytable} + + \bigskip + + \begin{mytable}{5} + \hline + bandwidth (Mbit/s) + & 50 & 50 & 50 & 50 & 50 \\ % & 10 & 10 \\ + \hline + latency (ms) + & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 \\ % & 0.03 & 0.01 \\ + \hline + Power (GFlops) + & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ % & 1 & 1.5 \\ + \hline + size $(n^3)$ + & 110 & 120 & 130 & 140 & 150 \\ % & 171 & 171 \\ + \hline + Precision + & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5} & \np{E-5} \\ + \hline + \hline + Relative gain + & 2.53 & 2.51 & 2.58 & 2.55 & 2.54 \\ % & 1.59 & 1.29 \\ + \hline + \end{mytable} +\end{table} + +%Then we have changed the network configuration using three clusters containing +%respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the +%clusters. In the same way as above, a judicious choice of key parameters has +%permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the +%relative gains greater than 1 with a matrix size from 62 to 100 elements. + +\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision} +%\begin{table}[!t] +% \centering +% \caption{3 clusters, each with 33 nodes} +% \label{tab.cluster.3x33} +% +% \begin{mytable}{6} +% \hline +% bandwidth +% & 10 & 5 & 4 & 3 & 2 & 6 \\ +% \hline +% latency +% & 0.01 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 \\ +% \hline +% power +% & 1 & 1 & 1 & 1 & 1 & 1 \\ +% \hline +% size +% & 62 & 100 & 100 & 100 & 100 & 171 \\ +% \hline +% Prec/Eprec +% & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} \\ +% \hline +% \hline +% Relative gain +% & 1.003 & 1.01 & 1.08 & 1.19 & 1.28 & 1.01 \\ +% \hline +% \end{mytable} +%\end{table} -Then we have changed the network configuration using three clusters containing -respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the -clusters. In the same way as above, a judicious choice of key parameters has -permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with -a matrix size from 62 to 100 elements. +%In a final step, results of an execution attempt to scale up the three clustered +%configuration but increasing by two hundreds hosts has been recorded in +%Table~\ref{tab.cluster.3x67}. -In a final step, results of an execution attempt to scale up the three clustered -configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}. +%\begin{table}[!t] +% \centering +% \caption{3 clusters, each with 66 nodes} +% \label{tab.cluster.3x67} +% +% \begin{mytable}{1} +% \hline +% bandwidth & 1 \\ +% \hline +% latency & 0.02 \\ +% \hline +% power & 1 \\ +% \hline +% size & 62 \\ +% \hline +% Prec/Eprec & \np{E-5} \\ +% \hline +% \hline +% Relative gain & 1.11 \\ +% \hline +% \end{mytable} +%\end{table} Note that the program was run with the following parameters: \paragraph*{SMPI parameters} \begin{itemize} - \item HOSTFILE : Hosts file description. - \item PLATFORM: file description of the platform architecture : clusters (CPU power, -... ) , intra cluster network description, inter cluster network (bandwidth bw , -lat latency , ... ). +\item HOSTFILE: Text file containing the list of the processors units name. Here 100 hosts; +\item PLATFORM: XML file description of the platform architecture : two clusters (cluster1 and cluster2) with the following characteristics : + \begin{itemize} + \item Processor unit power: \np[GFlops]{1.5}; + \item Intracluster network bandwidth: \np[Gbit/s]{1.25} and latency: + \np[$\mu$s]{0.05}; + \item Intercluster network bandwidth: \np[Mbit/s]{5} and latency: + \np[$\mu$s]{5}; + \end{itemize} \end{itemize} \paragraph*{Arguments of the program} \begin{itemize} - \item Description of the cluster architecture; - \item Maximum number of internal and external iterations; - \item Internal and external precisions; - \item Matrix size NX , NY and NZ; - \item Matrix diagonal value = 6.0; - \item Execution Mode: synchronous or asynchronous. +\item Description of the cluster architecture matching the format ; +\item Maximum number of iterations; +\item Precisions on the residual error; +\item Matrix size $N_x$, $N_y$ and $N_z$; +\item Matrix diagonal value: \np{1.0} (See~(\ref{eq:03})); +\item Matrix off-diagonal value: \np{-1}/\np{6} (See~(\ref{eq:03})); +\item Communication mode: asynchronous. \end{itemize} -\begin{table} - \centering - \caption{2 clusters X 50 nodes} - \label{tab.cluster.2x50} - \includegraphics[width=209pt]{img1.jpg} -\end{table} - -\begin{table} - \centering - \caption{3 clusters X 33 nodes} - \label{tab.cluster.3x33} - \includegraphics[width=209pt]{img2.jpg} -\end{table} - -\begin{table} - \centering - \caption{3 clusters X 67 nodes} - \label{tab.cluster.3x67} -% \includegraphics[width=160pt]{img3.jpg} - \includegraphics[scale=0.5]{img3.jpg} -\end{table} - \paragraph*{Interpretations and comments} -After analyzing the outputs, generally, for the configuration with two or three -clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the -used parameters affecting the results have given a speedup less than 1, showing -the effectiveness of the asynchronous performance compared to the synchronous -mode. - -In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a -deterioration of inter cluster network set with 5 Mbits/s of bandwidth, a latency -in order of a hundredth of a millisecond and a system power of one GFlops, an -efficiency of about 40\% in asynchronous mode is obtained for a matrix size of 62 -elements . It is noticed that the result remains stable even if we vary the -external precision from E -05 to E-09. By increasing the problem size up to 100 -elements, it was necessary to increase the CPU power of 50 \% to 1.5 GFlops for a -convergence of the algorithm with the same order of asynchronous mode efficiency. -Maintaining such a system power but this time, increasing network throughput -inter cluster up to 50 Mbits /s, the result of efficiency of about 40\% is -obtained with high external precision of E-11 for a matrix size from 110 to 150 -side elements . - -For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows -that it was difficult to have a combination which gives an efficiency of -asynchronous below 80 \%. Indeed, for a matrix size of 62 elements, equality -between the performance of the two modes (synchronous and asynchronous) is -achieved with an inter cluster of 10 Mbits/s and a latency of E- 01 ms. To -challenge an efficiency by 78\% with a matrix size of 100 points, it was -necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s. - -A last attempt was made for a configuration of three clusters but more power -with 200 nodes in total. The convergence with a speedup of 90 \% was obtained -with a bandwidth of 1 Mbits/s as shown in Table~\ref{tab.cluster.3x67}. - +After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting +the results have given a relative gain more than 2.5, showing the effectiveness of the +asynchronous performance compared to the synchronous mode. + +With these settings, Table~\ref{tab.cluster.2x50} shows +that after a deterioration of inter cluster network with a bandwidth of \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power +of one GFlops, an efficiency of about \np[\%]{40} is +obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains +stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By +increasing the matrix size up to 100 elements, it was necessary to increase the +CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency. Maintaining such processor power but increasing network throughput inter cluster up to +\np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with +high external precision of \np{E-11} for a matrix size from 110 to 150 side +elements. + +%For the 3 clusters architecture including a total of 100 hosts, +%Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination +%which gives a relative gain of asynchronous mode more than 1.2. Indeed, for a +%matrix size of 62 elements, equality between the performance of the two modes +%(synchronous and asynchronous) is achieved with an inter cluster of +%\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the +%inter cluster network bandwidth from 5 to \np[Mbit/s]{2}. +\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ??? + Quelle est la perte de perfs en faisant ça ?} + +%A last attempt was made for a configuration of three clusters but more powerful +%with 200 nodes in total. The convergence with a relative gain around 1.1 was +%obtained with a bandwidth of \np[Mbit/s]{1} as shown in +%Table~\ref{tab.cluster.3x67}. + +%\RC{Est ce qu'on sait expliquer pourquoi il y a une telle différence entre les résultats avec 2 et 3 clusters... Avec 3 clusters, ils sont pas très bons... Je me demande s'il ne faut pas les enlever...} +%\RC{En fait je pense avoir la réponse à ma remarque... On voit avec les 2 clusters que le gain est d'autant plus grand qu'on choisit une bonne précision. Donc, plusieurs solutions, lancer rapidement un long test pour confirmer ca, ou enlever des tests... ou on ne change rien :-)} +%\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??} +%\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.} \section{Conclusion} +The experimental results on executing a parallel iterative algorithm in +asynchronous mode on an environment simulating a large scale of virtual +computers organized with interconnected clusters have been presented. +Our work has demonstrated that using such a simulation tool allow us to +reach the following three objectives: + +\begin{enumerate} +\item To have a flexible configurable execution platform resolving the +hard exercise to access to very limited but so solicited physical +resources; +\item to ensure the algorithm convergence with a reasonable time and +iteration number ; +\item and finally and more importantly, to find the correct combination +of the cluster and network specifications permitting to save time in +executing the algorithm in asynchronous mode. +\end{enumerate} +Our results have shown that in certain conditions, asynchronous mode is +speeder up to \np[\%]{40} than executing the algorithm in synchronous mode +which is not negligible for solving complex practical problems with more +and more increasing size. + + Several studies have already addressed the performance execution time of +this class of algorithm. The work presented in this paper has +demonstrated an original solution to optimize the use of a simulation +tool to run efficiently an iterative parallel algorithm in asynchronous +mode in a grid architecture. + +\LZK{Perspectives???} - -% An example of a floating figure using the graphicx package. -% Note that \label must occur AFTER (or within) \caption. -% For figures, \caption should occur after the \includegraphics. -% Note that IEEEtran v1.7 and later has special internal code that -% is designed to preserve the operation of \label within \caption -% even when the captionsoff option is in effect. However, because -% of issues like this, it may be the safest practice to put all your -% \label just after \caption rather than within \caption{}. -% -% Reminder: the "draftcls" or "draftclsnofoot", not "draft", class -% option should be used if it is desired that the figures are to be -% displayed while in draft mode. -% -%\begin{figure}[!t] -%\centering -%\includegraphics[width=2.5in]{myfigure} -% where an .eps filename suffix will be assumed under latex, -% and a .pdf suffix will be assumed for pdflatex; or what has been declared -% via \DeclareGraphicsExtensions. -%\caption{Simulation Results} -%\label{fig_sim} -%\end{figure} - -% Note that IEEE typically puts floats only at the top, even when this -% results in a large percentage of a column being occupied by floats. - - -% An example of a double column floating figure using two subfigures. -% (The subfig.sty package must be loaded for this to work.) -% The subfigure \label commands are set within each subfloat command, the -% \label for the overall figure must come after \caption. -% \hfil must be used as a separator to get equal spacing. -% The subfigure.sty package works much the same way, except \subfigure is -% used instead of \subfloat. -% -%\begin{figure*}[!t] -%\centerline{\subfloat[Case I]\includegraphics[width=2.5in]{subfigcase1}% -%\label{fig_first_case}} -%\hfil -%\subfloat[Case II]{\includegraphics[width=2.5in]{subfigcase2}% -%\label{fig_second_case}}} -%\caption{Simulation results} -%\label{fig_sim} -%\end{figure*} -% -% Note that often IEEE papers with subfigures do not employ subfigure -% captions (using the optional argument to \subfloat), but instead will -% reference/describe all of them (a), (b), etc., within the main caption. - - -% An example of a floating table. Note that, for IEEE style tables, the -% \caption command should come BEFORE the table. Table text will default to -% \footnotesize as IEEE normally uses this smaller font for tables. -% The \label must come after \caption as always. -% -%\begin{table}[!t] -%% increase table row spacing, adjust to taste -%\renewcommand{\arraystretch}{1.3} -% if using array.sty, it might be a good idea to tweak the value of -% \extrarowheight as needed to properly center the text within the cells -%\caption{An Example of a Table} -%\label{table_example} -%\centering -%% Some packages, such as MDW tools, offer better commands for making tables -%% than the plain LaTeX2e tabular which is used here. -%\begin{tabular}{|c||c|} -%\hline -%One & Two\\ -%\hline -%Three & Four\\ -%\hline -%\end{tabular} -%\end{table} - - -% Note that IEEE does not put floats in the very first column - or typically -% anywhere on the first page for that matter. Also, in-text middle ("here") -% positioning is not used. Most IEEE journals/conferences use top floats -% exclusively. Note that, LaTeX2e, unlike IEEE journals/conferences, places -% footnotes above bottom floats. This can be corrected via the \fnbelowfloat -% command of the stfloats package. - - - - - - - -% conference papers do not normally have an appendix - - -% use section* for acknowledgement \section*{Acknowledgment} - -The authors would like to thank... - - - - +This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01). +\todo[inline]{The authors would like to thank\dots{}} % trigger a \newpage just before the given reference % number - used to balance the columns on the last page % adjust value as needed - may need to be readjusted if % the document is modified later -%\IEEEtriggeratref{8} -% The "triggered" command can be changed if desired: -%\IEEEtriggercmd{\enlargethispage{-5in}} - -% references section - -% can use a bibliography generated by BibTeX as a .bbl file -% BibTeX documentation can be easily obtained at: -% http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/ -% The IEEEtran BibTeX style support page is at: -% http://www.michaelshell.org/tex/ieeetran/bibtex/ \bibliographystyle{IEEEtran} -% argument is your BibTeX string definitions and bibliography database(s) -\bibliography{hpccBib} -% -% manually copy in the resultant .bbl file -% set second argument of \begin to the number of references -% (used to reserve space for the reference number labels box) -%\begin{thebibliography}{1} -% -%\bibitem{IEEEhowto:kopka} -%H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus -% 0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999. -% -%\end{thebibliography} +\bibliography{IEEEabrv,hpccBib} - -% that's all folks \end{document} - +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% fill-column: 80 +%%% ispell-local-dictionary: "american" +%%% End: + +% LocalWords: Ramamonjisoa Laiymani Arnaud Giersch Ziane Khodja Raphaël Femto +% LocalWords: Université Franche Comté IUT Montbéliard Maréchal Juin Inria Sud +% LocalWords: Ouest Vieille Talence cedex scalability experimentations HPC MPI +% LocalWords: Parallelization AIAC GMRES multi SMPI SISC SIAC SimDAG DAGs Lua +% LocalWords: Fortran GFlops priori Mbit de du fcomte multisplitting scalable +% LocalWords: SimGrid Belfort parallelize Labex ANR LABX IEEEabrv hpccBib +% LocalWords: intra durations nonsingular Waitall discretization discretized +% LocalWords: InnerSolver Isend Irecv