]> AND Private Git Repository - hpcc2014.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
28-04-2014
authorlilia <lilia@amazigh.bordeaux.inria.fr>
Mon, 28 Apr 2014 10:23:36 +0000 (12:23 +0200)
committerlilia <lilia@amazigh.bordeaux.inria.fr>
Mon, 28 Apr 2014 10:23:36 +0000 (12:23 +0200)
hpcc.tex

index 47480f886eae3199c1442f0401730aad9e14048e..e4c77d374f9709dcde3a325c65566c6df4ab4bee 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -419,17 +419,17 @@ u =0 \text{~on~} \Gamma =\partial\Omega
 \right.
 \label{eq:02}
 \end{equation}
 \right.
 \label{eq:02}
 \end{equation}
-where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. The general iteration scheme of our multisplitting method in a 3D domain using a seven point stencil could be written as 
+where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
 \begin{equation}
 \begin{equation}
-\begin{array}{ll}
-u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\
-               & (u^k(x-1,y,z) + u^k(x+1,y,z) + \\
              & u^k(x,y-1,z) + u^k(x,y+1,z) + \\
-               & u^k(x,y,z-1) + u^k(x,y,z+1)),
+\begin{array}{l}
+u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z)
+%u(x,y,z)= & \frac{1}{6}\times [u(x-1,y,z) + u(x+1,y,z) + \\
%         & u(x,y-1,z) + u(x,y+1,z) + \\
+  %        & u(x,y,z-1) + u(x,y,z+1) - \\ & h^2f(x,y,z)],
 \end{array}
 \label{eq:03}
 \end{equation} 
 \end{array}
 \label{eq:03}
 \end{equation} 
-where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
+where $h$ is the distance between two adjacent elements in the spatial discretization scheme and the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
 
 The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. 
 
 
 The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries.