From: lilia Date: Thu, 10 Apr 2014 22:44:48 +0000 (+0200) Subject: 11-04-2014 X-Git-Tag: hpcc2014_submission~142 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/commitdiff_plain/33ff15ea54b83011db5d2392c0e517c0855abce8?ds=sidebyside;hp=2367662d760a73d98ca68d37a3912c211972afe3 11-04-2014 --- diff --git a/hpcc.tex b/hpcc.tex index 968b235..fc79391 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -322,9 +322,9 @@ \usepackage[utf8]{inputenc} \usepackage{amsfonts,amssymb} \usepackage{amsmath} -%\usepackage{amsmath} +\usepackage{algorithm} +\usepackage{algpseudocode} %\usepackage{amsthm} -%\usepackage{amsfonts} %\usepackage{graphicx} %\usepackage{xspace} \usepackage[american]{babel} @@ -335,6 +335,14 @@ % et l'affichage correct des URL (commande \url{http://example.com}) %\usepackage{hyperref} +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + + + \begin{document} % @@ -417,7 +425,7 @@ Décrire SimGrid (Arnaud) -%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Simulation of the multisplitting method} %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid. Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping @@ -452,7 +460,31 @@ Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, \label{eq:4.1} \end{equation} is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. -%%%%% + +\begin{algorithm} +\caption{A multisplitting solver with inner iteration GMRES method} +\begin{algorithmic}[1] +\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess) +\Output $X_l$ (local solution vector)\vspace{0.2cm} +\State Load $A_l$, $B_l$, $x^0$ +\State Initialize the shared vector $\hat{x}=x^0$ +\For {$k=1,2,3,\ldots$ until the global convergence} +\State $x^0=\hat{x}$ +\State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$} +\State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$ +\EndFor + +\Statex + +\Function {InnerSolver}{$x^0$, $k$} +\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$ +\State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess +\State \Return $X_l^k$ +\EndFunction +\end{algorithmic} +\label{algo:01} +\end{algorithm} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%