From: Arnaud Giersch Date: Tue, 22 Apr 2014 12:09:08 +0000 (+0200) Subject: Cosmetics: use environment equation* instead of \[ and \]. X-Git-Tag: hpcc2014_submission~88 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/commitdiff_plain/8873e8d5fdf0737801b25abfbdea45ec4340ad2a?ds=inline;hp=6984fef9a0c912c9bc10b004ed7c8b50d6ff188e Cosmetics: use environment equation* instead of \[ and \]. --- diff --git a/hpcc.tex b/hpcc.tex index 3dd67ef..e9433c7 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -234,35 +234,36 @@ with little or no modifications. SMPI implements about \np[\%]{80} of the MPI \section{Simulation of the multisplitting method} %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid. Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping -\[ -\left(\begin{array}{ccc} -A_{11} & \cdots & A_{1L} \\ -\vdots & \ddots & \vdots\\ -A_{L1} & \cdots & A_{LL} -\end{array} \right) -\times -\left(\begin{array}{c} -X_1 \\ -\vdots\\ -X_L -\end{array} \right) -= -\left(\begin{array}{c} -B_1 \\ -\vdots\\ -B_L -\end{array} \right)\] +\begin{equation*} + \left(\begin{array}{ccc} + A_{11} & \cdots & A_{1L} \\ + \vdots & \ddots & \vdots\\ + A_{L1} & \cdots & A_{LL} + \end{array} \right) + \times + \left(\begin{array}{c} + X_1 \\ + \vdots\\ + X_L + \end{array} \right) + = + \left(\begin{array}{c} + B_1 \\ + \vdots\\ + B_L + \end{array} \right) +\end{equation*} in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,m\in\{1,\ldots,L\}$ $A_{lm}$ is a rectangular block of $A$ of size $n_l\times n_m$, $X_l$ and $B_l$ are sub-vectors of $x$ and $b$, respectively, of size $n_l$ each and $\sum_{l} n_l=\sum_{m} n_m=n$. The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system \begin{equation} -\left\{ -\begin{array}{l} -A_{ll}X_l = Y_l \mbox{,~such that}\\ -Y_l = B_l - \displaystyle\sum_{\substack{m=1\\ m\neq l}}^{L}A_{lm}X_m -\end{array} -\right. -\label{eq:4.1} + \label{eq:4.1} + \left\{ + \begin{array}{l} + A_{ll}X_l = Y_l \text{, such that}\\ + Y_l = B_l - \displaystyle\sum_{\substack{m=1\\ m\neq l}}^{L}A_{lm}X_m + \end{array} + \right. \end{equation} is solved independently by a cluster and communications are required to update the right-hand side sub-vector $Y_l$, such that the sub-vectors $X_m$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. @@ -284,7 +285,10 @@ is solved independently by a cluster and communications are required to update t \Statex \Function {InnerSolver}{$x^0$, $k$} -\State Compute local right-hand side $Y_l$: \[Y_l = B_l - \sum\nolimits^L_{\substack{m=1 \\m\neq l}}A_{lm}X_m^0\] +\State Compute local right-hand side $Y_l$: + \begin{equation*} + Y_l = B_l - \sum\nolimits^L_{\substack{m=1\\ m\neq l}}A_{lm}X_m^0 + \end{equation*} \State Solving sub-system $A_{ll}X_l^k=Y_l$ with the parallel GMRES method \State \Return $X_l^k$ \EndFunction @@ -315,7 +319,9 @@ exchanged by message passing using MPI non-blocking communication routines. \end{figure} The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank $1$) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank $1$, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster $1$ receives from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster $1$ broadcasts a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied -\[(k\leq \MI) \mbox{~or~} (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon)\] +\begin{equation*} + (k\leq \MI) \text{ or } (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon) +\end{equation*} where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. \LZK{Description du processus d'adaptation de l'algo multisplitting à SimGrid}