From: Arnaud Giersch Date: Sat, 26 Apr 2014 12:45:04 +0000 (+0200) Subject: Use \ell instead of l in equations. X-Git-Tag: hpcc2014_submission~60 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/commitdiff_plain/9a16c3f8b303f6260ecf3bf14459ee0bd43e6ef1?ds=inline;hp=--cc Use \ell instead of l in equations. It's easier to distinguish from 1 (one). --- 9a16c3f8b303f6260ecf3bf14459ee0bd43e6ef1 diff --git a/hpcc.tex b/hpcc.tex index c9aaf0c..e780bbd 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -296,51 +296,75 @@ Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, whe B_L \end{array} \right) \end{equation*} -in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,m\in\{1,\ldots,L\}$ $A_{lm}$ is a rectangular block of $A$ of size $n_l\times n_m$, $X_l$ and $B_l$ are sub-vectors of $x$ and $b$, respectively, of size $n_l$ each and $\sum_{l} n_l=\sum_{m} n_m=n$. +in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ +are assigned to one cluster, where for all $\ell,m\in\{1,\ldots,L\}$ $A_{\ell + m}$ is a rectangular block of $A$ of size $n_\ell\times n_m$, $X_\ell$ and +$B_\ell$ are sub-vectors of $x$ and $b$, respectively, of size $n_\ell$ each and +$\sum_{\ell} n_\ell=\sum_{m} n_m=n$. The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system \begin{equation} \label{eq:4.1} \left\{ \begin{array}{l} - A_{ll}X_l = Y_l \text{, such that}\\ - Y_l = B_l - \displaystyle\sum_{\substack{m=1\\ m\neq l}}^{L}A_{lm}X_m + A_{\ell\ell}X_\ell = Y_\ell \text{, such that}\\ + Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\ m\neq \ell}}^{L}A_{\ell m}X_m \end{array} \right. \end{equation} -is solved independently by a cluster and communications are required to update the right-hand side sub-vector $Y_l$, such that the sub-vectors $X_m$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. +is solved independently by a cluster and communications are required to update +the right-hand side sub-vector $Y_\ell$, such that the sub-vectors $X_m$ +represent the data dependencies between the clusters. As each sub-system +(\ref{eq:4.1}) is solved in parallel by a cluster of processors, our +multisplitting method uses an iterative method as an inner solver which is +easier to parallelize and more scalable than a direct method. In this work, we +use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most +used iterative method by many researchers. \begin{figure}[!t] %%% IEEE instructions forbid to use an algorithm environment here, use figure %%% instead \begin{algorithmic}[1] -\Input $A_l$ (sparse sub-matrix), $B_l$ (right-hand side sub-vector) -\Output $X_l$ (solution sub-vector)\vspace{0.2cm} -\State Load $A_l$, $B_l$ +\Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector) +\Output $X_\ell$ (solution sub-vector)\medskip + +\State Load $A_\ell$, $B_\ell$ \State Set the initial guess $x^0$ \For {$k=0,1,2,\ldots$ until the global convergence} \State Restart outer iteration with $x^0=x^k$ \State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$} -\State\label{algo:01:send} Send shared elements of $X_l^{k+1}$ to neighboring clusters -\State\label{algo:01:recv} Receive shared elements in $\{X_m^{k+1}\}_{m\neq l}$ +\State\label{algo:01:send} Send shared elements of $X_\ell^{k+1}$ to neighboring clusters +\State\label{algo:01:recv} Receive shared elements in $\{X_m^{k+1}\}_{m\neq \ell}$ \EndFor \Statex \Function {InnerSolver}{$x^0$, $k$} -\State Compute local right-hand side $Y_l$: +\State Compute local right-hand side $Y_\ell$: \begin{equation*} - Y_l = B_l - \sum\nolimits^L_{\substack{m=1\\ m\neq l}}A_{lm}X_m^0 + Y_\ell = B_\ell - \sum\nolimits^L_{\substack{m=1\\ m\neq \ell}}A_{\ell m}X_m^0 \end{equation*} -\State Solving sub-system $A_{ll}X_l^k=Y_l$ with the parallel GMRES method -\State \Return $X_l^k$ +\State Solving sub-system $A_{\ell\ell}X_\ell^k=Y_\ell$ with the parallel GMRES method +\State \Return $X_\ell^k$ \EndFunction \end{algorithmic} \caption{A multisplitting solver with GMRES method} \label{algo:01} \end{figure} -Algorithm on Figure~\ref{algo:01} shows the main key points of the multisplitting method to solve a large sparse linear system. This algorithm is based on an outer-inner iteration method where the parallel synchronous GMRES method is used to solve the inner iteration. It is executed in parallel by each cluster of processors. For all $l,m\in\{1,\ldots,L\}$, the matrices and vectors with the subscript $l$ represent the local data for cluster $l$, while $\{A_{lm}\}_{m\neq l}$ are off-diagonal matrices of sparse matrix $A$ and $\{X_m\}_{m\neq l}$ contain vector elements of solution $x$ shared with neighboring clusters. At every outer iteration $k$, asynchronous communications are performed between processors of the local cluster and those of distant clusters (lines~\ref{algo:01:send} and~\ref{algo:01:recv} in Figure~\ref{algo:01}). The shared vector elements of the solution $x$ are exchanged by message passing using MPI non-blocking communication routines. +Algorithm on Figure~\ref{algo:01} shows the main key points of the +multisplitting method to solve a large sparse linear system. This algorithm is +based on an outer-inner iteration method where the parallel synchronous GMRES +method is used to solve the inner iteration. It is executed in parallel by each +cluster of processors. For all $\ell,m\in\{1,\ldots,L\}$, the matrices and +vectors with the subscript $\ell$ represent the local data for cluster $\ell$, +while $\{A_{\ell m}\}_{m\neq \ell}$ are off-diagonal matrices of sparse matrix +$A$ and $\{X_m\}_{m\neq \ell}$ contain vector elements of solution $x$ shared +with neighboring clusters. At every outer iteration $k$, asynchronous +communications are performed between processors of the local cluster and those +of distant clusters (lines~\ref{algo:01:send} and~\ref{algo:01:recv} in +Figure~\ref{algo:01}). The shared vector elements of the solution $x$ are +exchanged by message passing using MPI non-blocking communication routines. \begin{figure}[!t] \centering @@ -362,14 +386,14 @@ sets the token to \textit{True} if the local convergence is achieved or to global convergence is detected when the master of cluster 1 receives from the master of cluster $L$ a token set to \textit{True}. In this case, the master of cluster 1 broadcasts a stop message to masters of other clusters. In this work, -the local convergence on each cluster $l$ is detected when the following +the local convergence on each cluster $\ell$ is detected when the following condition is satisfied \begin{equation*} - (k\leq \MI) \text{ or } (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon) + (k\leq \MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon) \end{equation*} where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution -$X_l^k$ and $X_l^{k+1}$. +$X_\ell^k$ and $X_\ell^{k+1}$. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code