From: laiymani Date: Tue, 15 Apr 2014 13:35:24 +0000 (+0200) Subject: début du travail sur a patie async X-Git-Tag: hpcc2014_submission~111 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hpcc2014.git/commitdiff_plain/a9757b4dc9aad25ed2dc6884c0bd638a0f101c31 début du travail sur a patie async --- diff --git a/hpcc.tex b/hpcc.tex index ab6e020..5ab9faf 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -169,7 +169,45 @@ our future work after the results. \section{The asynchronous iteration model} -\DL{Décrire le modèle asynchrone. Je m'en charge} +As exposed in the introduction, parallel iterative methods are now +widely used in many scientific domains. They can be classified in three main classes +depending on how iterations and communications are managed (for more +details readers can refer to \cite{bcvc02:ip}). In the +\textit{Synchronous Iterations - Synchronous Communications (SISC)} +model data are exchanged at the end of each iteration. All the +processors must begin the same iteration at the same time and +important idle times on processors are generated. The +\textit{Synchronous Iterations - Asynchronous Communications (SIAC)} +model can be compared to the previous one except that data required on +another processor are sent asynchronously i.e. without stopping +current computations. This technique allows to partially overlap +communications by computations but unfortunately, the overlapping is +only partial and important idle times remain. It is clear that, in a +grid computing context, where the number of computational nodes is large, +heterogeneous and widely distributed, the idle times generated by +synchronizations are very penalizing. One way to overcome this problem +is to use the \textit{Asynchronous Iterations - Asynchronous + Communications (AIAC)} model. Here, local computations do not need +to wait for required data. Processors can then perform their +iterations with the data present at that time. Figure \ref{fig:aiac} +illustrates this model where the grey blocks represent the computation +phases, the white spaces the idle times and the arrows the +communications. With this algorithmic model, the number of iterations +required before the convergence is generally greater than for the two +former classes. But, and as detailed in \cite{bcvc06:ij}, AIAC +algorithms can significantly reduce overall execution times by +suppressing idle times due to synchronizations especially in a grid +computing context. + +\begin{figure}[htbp] + \centering + \includegraphics[width=8cm]{AIAC.pdf} + \caption{The Asynchronous Iterations - Asynchronous Communications model } + \label{fig:aiac} +\end{figure} + + + \section{SimGrid}