From 6eddf32c46080635350a6e56b38746b941029d9d Mon Sep 17 00:00:00 2001 From: lilia Date: Mon, 28 Apr 2014 14:02:58 +0200 Subject: [PATCH] 28-04-2014b --- hpcc.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/hpcc.tex b/hpcc.tex index e4c77d3..9313c4d 100644 --- a/hpcc.tex +++ b/hpcc.tex @@ -422,7 +422,7 @@ u =0 \text{~on~} \Gamma =\partial\Omega where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as \begin{equation} \begin{array}{l} -u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z) +u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z), %u(x,y,z)= & \frac{1}{6}\times [u(x-1,y,z) + u(x+1,y,z) + \\ % & u(x,y-1,z) + u(x,y+1,z) + \\ % & u(x,y,z-1) + u(x,y,z+1) - \\ & h^2f(x,y,z)], -- 2.39.5