
Mapping Asynchronous Iterative Applications on Heterogeneous
Distributed Architectures

Raphaël Couturier David Laiymani Sébastien Miquée
Laboratoire d’Informatique de Franche-Comté (LIFC)

University of Franche-Comté
IUT de Belfort-Montbéliard,2 Rue Engel Gros, BP 27, 90016 Belfort, France
Email: {raphael.couturier,david.laiymani,sebastien.miquee}@univ-fcomte.fr

Abstract

To design parallel numerical algorithms on large
scale distributed and heterogeneous platforms, the
asynchronous iteration model (AIAC) may be an
efficient solution. This class of algorithm is very
suitable since it enables communication/computation
overlapping and it suppresses all synchronizations
between computation nodes. Since target architectures
are composed of more than one thousand
heterogeneous nodes connected through heterogeneous
networks, the need for mapping algorithms is crucial.
In this paper, we propose a new mapping algorithm
dedicated to the AIAC model. To evaluate our
mapping algorithm we first implemented it in the
JaceP2P programming and executing environment
dedicated to AIAC applications. Then we conducted
a set of experiments on the Grid’5000 testbed with
more than 700 computing cores and with a real and
typical AIAC application based on the NAS parallel
benchmarks. Results are very encouraging and show
that the use of our algorithm brings an important
gain in term of execution time (about 40%).

Keywords: Mapping algorithms, Distributed clus-
ters, Parallel iterative asynchronous algorithms, Hetero-
geneous architectures.

1. Introduction

Nowadays scientists of many domains, like climatic
simulation or biological research, need great and
powerful architectures to compute their large appli-
cations. Distributed clusters architectures, which are
part of the grid architecture, are one of the best
architectures used to solve such applications with
an acceptable execution time. These architectures
provide a lot of heterogeneous computing nodes in-
terconnected by a high performance network, but
even with the greatest efforts of their maintainers,

there are latency and computation capacity differ-
ences between clusters of each site.
In order to efficiently use this massive distributed

computation power, numerous numerical algorithms
have been elaborated. These algorithms can be
broadly classified into two categories:
• Direct methods, which give the exact solution

of the problem using a finite number of opera-
tions (e.g. Cholesky [1], LU [2],etc). However,
these methods cannot be applied to all kinds of
numerical problems. In general, they are not well
adapted to very large problems.

• Iterative methods, that repeat the same in-
structions until a desired approximation of the
solution is reached – we say that the algorithm
has converged. Iterative algorithms constitute
the only known approach to solving some kinds
of problems and they are easier to parallelize
than direct methods. The Jacobi or Conjugate
Gradient [3] algorithms are examples of such
iterative methods.

In the rest of this paper we only focus on iterative
methods. Now to parallelize this kind of algorithm,
two classes of parallel iterative models can be de-
scribed:

Processor 1

Processor 2

Time
Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 1. Two processors computing in the Synchronous
Iteration - Asynchronous Communication (SIAC) model

• The synchronous iteration model. In this
model, as can be seen on Figure 1, after each
iteration (represented by a filled rectangle), a
node sends its results to its neighbors and waits

for the reception of all dependency messages
from its neighbors to start the next iteration.
This results in large idle times (represented by
spaces between each iteration) and is equivalent
to a global synchronization of nodes after each
iteration. These synchronizations can strongly
penalize the overall performances of the applica-
tion particularly in case of large scale platforms
with high latency network. Furthermore, if a
message is lost, its receiver will wait forever for
this message and the application will be blocked.
In the same way, if a machine falls down, all the
computation will be blocked.

Itér. 4

Processor 1

Processor 2

Time

Iter. 1

Iter. 1

Iter. 2

Iter. 2

Iter. 3

Iter. 3

Iter. 4

Iter. 5

Iter. 5

Iter. 6

Figure 2. Two processors computing in the Asyn-
chronous Iteration - Asynchronous Communication
(AIAC) model

• The asynchronous iteration model. In this
model [4], as can be seen on Figure 2, after each
iteration, a node sends its results to its neigh-
bors and starts immediately the next iteration
with the last received data. These data could
be data from previous iterations, because last
data are not arrived in time or neighbors have
not finish their current iteration. The receiving
and sending mechanisms are asynchronous and
nodes do not have to wait for the reception of
dependency messages from their neighbors. Con-
sequently, there is no more idle time between two
iterations. Furthermore, this model is tolerant
to messages loss and even if a node dies, the
remaining nodes continue the computation, with
the last data the failed node sent. Unfortunately,
the asynchronous iteration model generally re-
quires more iterations than the synchronous one
to converge to the solution.
This class of algorithms is very suitable in
a distributed clusters computing context be-
cause it suppresses all synchronizations between
computation nodes, tolerates messages loss and
enables the overlapping of communications by
computations. Interested readers might consult
[5] for a precise classification and comparison of
parallel iterative algorithms. In this way, several
experiments [5] show the relevance of the AIAC
algorithms in the context of distributed clusters
with high latency between clusters. These works
underline the good adaptability of AIAC algo-
rithms to network and processor heterogeneity.

As we aim to solve very large problems on hetero-

geneous distributed architectures, in the rest of this
study we only focus on the asynchronous iteration
model. In order to efficiently use such algorithms on
distributed clusters architectures, it is essential to
map the tasks of the application to the best sub-sets
of nodes of the target architecture. This mapping
procedure must take into account parameters such
as network heterogeneity, computing nodes hetero-
geneity and tasks heterogeneity in order to minimize
the overall execution time of the application. To
the best of our knowledge, there exits no algorithm
which specifically addresses the mapping of AIAC
applications on distributed architectures. The aim of
this paper is to propose a new mapping algorithm
dedicated to AIAC applications and to implement it
into a real large scale computing platform, JaceP2P-
V2. Experiments conducted on the Grid’5000 testbed
with more than 400 computing cores show that this
new algorithm allows to enhance the performances
of JaceP2P-V2 of about 40% for a real and typical
AIAC application.
The rest of this paper is organized as follows.

Section 2 presents the JaceP2P-V2 middleware. We
focus here on one of the main drawbacks of this
platform: its lack of an efficient mapping strategy.
Section 3 presents our mapping problem and quotes
existing issues to address it. Section 4 describes the
specificities of the AIAC model and details the main
solution we propose to address the AIAC mapping
problem. In section 5 we describe the experiments
we have conducted, with their different components
and results. These results were conducted on the
Grid’5000 testbed with more than 400 computing
cores and show an important gain (about 40%) of
the overall execution time for a typical AIAC appli-
cation, i.e. based on the NAS Parallel Benchmark.
Finally, we give some concluding remarks and plan
our future work in section 6.

2. JaceP2P-V2

JaceP2P-V2 [6] is a distributed platform imple-
mented using the Java programming language and
dedicated to developing and executing parallel it-
erative asynchronous applications. JaceP2P-V2 ex-
ecutes parallel iterative asynchronous applications
with dependencies between computing nodes. In ad-
dition, JaceP2P is fault tolerant which allows it to
execute parallel applications over volatile environ-
ments and even for stable environments like local
clusters, it offers a safer and crash free platform. To
our knowledge this is the only platform dedicated to
designing and executing AIAC algorithms.

2.1. Architecture

In this section we describe the JaceP2P-V2 envi-
ronment. As can be seen on Figure 3, which shows

its architecture, this platform is composed of three
main entities:

�����
�����
�����

�����
�����
�����

����
����
����

����
����
���� �����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����SN3

SN2

SN1

Communicate

Heartbeat

SP1 SP2

D2

D1D3

Figure 3. The JaceP2P-V2 architecture

• The first entity is the “super-node” (represented
by a big circle in figure 3). Super-nodes form
a circular network and store, in registers, the
identifiers of all the computing nodes that are
connected to the platform and that are not
executing any application. A super-node regu-
larly receives heartbeat messages (represented
by doted lines in figure 3) from the computing
nodes connected to it. If a super-node does not
receive a heartbeat message from a computing
node for a given period of time, it declares that
this computing node is dead and deletes its
identifier from the register.

• The second entity is the “spawner” (represented
by a square in figure 3). When a user wants to
execute a parallel application that requires N
computing nodes, he or she launches a spawner.
The spawner contacts a super-node to reserve
the N computing nodes plus some extra nodes.
When the spawner receives the list of nodes
from the super-node, it transforms the extra
nodes into spawners (for fault tolerance and
scalability reasons) and stores the identifiers of
the rest of the nodes in its own register. Once
the extra nodes are transformed into spawners,
they form a circular network and they receive
the register containing the identifiers of the
computing nodes. Then each spawner becomes
responsible for a subgroup of computing nodes,
starts the tasks on the computing nodes under
its command and sends a specific register to
them. If the spawner receives a message from
a computing node informing that one of its
neighbors is fallen, it fetches a new one from
the super-node in order to replace the dead one.
The spawner initializes the new daemon, which
retrieves the last backup (see next paragraph)
of the dead node and continues the computing
task from that checkpoint.

• The third entity is the “daemon”, or the com-
puting node, (represented in figure 3 by a hashed
small circle if it is idle and by a white small circle
if it is executing an application). Once launched,
it connects to a super-node and waits for a
task to execute. Once they begin executing an
application they form a circular network which
is only used in the failure detection mechanism.
Each daemon can communicate directly with the
daemons whose identifiers are in its register. At
the end of a task, the daemons reconnect to a
super-node.

To be able to execute asynchronous iterative ap-
plications, JaceP2P-V2 has an asynchronous messag-
ing mechanism and to resist daemons’ failures, it
implements a distributed backup mechanism called
the uncoordinated distributed checkpointing. This
method allows daemons to save their data on neigh-
boring daemons without any user intervention. The
asynchronous nature of the application allows two
daemons to execute two different iterations, thus
each daemon saves its status without synchronizing
with other daemons. This decentralized procedure
allows the platform to be very scalable, with no
weak points and does not require a secure and stable
station for backups. Moreover, since the AIAC model
is tolerant to messages loss, if a daemon dies, the
other computing nodes continue their tasks and are
not affected by this failure. For more details on the
JaceP2P-V2 platform, readers can refer to [6].

2.2. Benefits of mapping

In the JaceP2P-V2 environment, presented in the
previous section, there is no effective mapping so-
lution. Indeed, when a user wants to launch an
application, the spawner emits a request to the super-
node, which is in charge of available daemons. Basi-
cally, the super-node returns the amount of requested
computing nodes by choosing in its own list. In this
method, the super-node only cares about the amount
of requested nodes, it returns in general nodes in the
order of their connection to the platform – there is
no specific selection. Distributed architectures such
as distributed clusters, as can be seen on Figure 4,
are often composed of heterogeneous clusters linked
via heterogeneous networks with high latencies and
bandwidths. As an example the Grid’5000 [7] testbed
is composed of 23 clusters spread over 9 sites. Those
clusters are heterogeneous, with computing powers
starting from bi-cores at 2GHz to bi-quadri-cores at
2.83GHz with 2Go of memory for the first one to
8Go for the second. Links relying clusters are 10Gb/s
capable, but as many researchers use this platform,
high latencies appear in links between sites.
With such an architecture, it could be efficient

to assign tasks communicating with each other on

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

clusters
Site containing

High latency network

Low latency network

Figure 4. A distributed clusters architecture

the same cluster, in order to improve communica-
tions. But, as we use very large problems, it is
quite impossible to find clusters containing as many
computing nodes as requested. So we have to dis-
patch tasks over several clusters. That implies to deal
with heterogeneity in clusters computing power and
heterogeneity in network. We should make a trade-off
between both components in order to take the best
part of each one to improve the overall performances.

In order to check if a tasks mapping algo-
rithm would provide performances improvement in
JaceP2P-V2 environment, we have evaluated the
contributions of a simple mapping algorithm, which
is described in section 5.3.1. These experiments used
the NPB Kernel CG application described in section
5.1, with two problem sizes (the given problem sizes
are the sides sizes of square matrices used) and using
a distributed clusters architecture composed of 102
computing nodes, representing 320 computing cores,
spread over 5 clusters in 5 sites. The results of these
experiments are given in Table 1.

Problem size 550, 000 5, 000, 000

Execution Time (without mapping) 141s 129s
Execution Time (with mapping) 97s 81s

Gains 31% 37%

Table 1. Effects of a simple tasks mapping algorithm
on application’s execution time

As can be seen in Table 1, the effects of a simple
tasks mapping algorithm are significant. This en-
couraged us to look further for better task mapping
algorithms. In the next section, we describe the
specificities of our model and issues which can be
exploited.

3. Problem description

In this section we describe the AIAC mapping
problem. We first formalize the different elements we

should take into consideration: the application, the
targeted architecture and the objectives functions of
the mapping. We also give a state of the art about
considered kinds of mapping algorithms.

3.1. Model formalization

In this section the models of the applications and
architectures we used are given, with the objectives
functions of the mapping algorithms.

3.1.1. Application modeling. In high perfor-
mance computing, when we want to improve the
global execution time of parallel applications we have
to make an efficient assignation of tasks to computing
nodes. Usually, to assign tasks of parallel applications
to computing nodes, scheduling algorithms are used.
These algorithms often represent the application by a
graph, called DAG [8], [9], [10], [11] (Directed Acyclic
Graph). In this graph, each task is represented by
a vertex which is relied to others by edges, which
represent dependencies and communications between
tasks. This means that some tasks could not start
before other ones finish their computation and send
their results. As exposed in the introduction, in the
AIAC model, there is no precedence between tasks.
Indeed, with the AIAC model, all tasks compute

in parallel at the same time. As communications are
asynchronous, there is no synchronization and no
precedence. During an iteration, each task does its
job and sends results to its neighbors and continues
with the next iteration. If a task receives new data
from its dependencies, it includes them and the
computation continues with these new data. If not
all dependencies data, or none, are received before
starting the computation of the next iteration, old
data are used instead. Tasks are not blocked on
dependencies. Nevertheless regularly receiving new
data allows tasks to converge more quickly. So, it
appears that DAG are not appropriate to modeling
AIAC applications. TIG [12], [13] (Task Interaction
Graph) are more appropriate.
In the TIG model, a parallel program

is represented by a graph GT (V,E), where
V = {V1, V2, . . . Vv} is the set of |V | vertices
and E ⊂ V × V is the set of undirectional edges
(see Figure 5). The vertices represent tasks and
the edges represent the mutual communication
among tasks. A function ET : V → R+ gives
the computation cost of tasks and CT : E → R+

gives the communication cost for message passing
on edges. We define v = |V |, ET (Vi) = ei and
CT (Vi, Vj) = cij . For example, in Figure 5, e0 = 10
and c01 = 2, c03 = 2 and c04 = 2. Tasks in TIG
exchange information during their execution and
there is no precedence relationship among tasks;
each task cooperates with its neighbors. This model

1 20

4 53

7 86

10

14

11

12

2

2
2

2 4

4

1

3

78

3

2

3

3

3

8

6

5

Figure 5. An example of a TIG of a nine tasks
application

is used to represent applications, where tasks are
considered to be executed simultaneously. Temporal
dependencies in the execution of tasks are not
explicitly addressed: all the tasks are considered
simultaneously executable and communications can
take place at any time during the computation. That
is why vertices and edges are labeled with weights
describing computational and communication costs.

3.1.2. Architecture modeling. As TIG models
the application, we have to model the targeted ar-
chitecture. A distributed clusters architecture can
be modeled by a three-level-graph. The levels are
architecture (a), in our study it is the Grid’5000 grid,
cluster (c) and computing node (n) levels. Figure 4
in section 2.2 shows such a model. Let GG(N,L)
be a graph representing a distributed clusters ar-
chitecture, where N = {N1, N2, . . . Nn} is the set
of |N | vertices and L is the set of undirectional
edges. The vertices represent the computing nodes
and the edges represent the links between them. An
edge Li ∈ L is an unordered pair (Nx, Ny) ∈ N ,
representing a communication link between nodes
x and y. Let be |C| the number of clusters in the
architecture containing computing nodes. A function
WN : N → R+ gives the computational power of
nodes and WL : L → R+ gives the communication
latency of links. We define WN(Ni) = wni and
WL(Li, Lj) = wlij .
An architecture with a three-level-graph is

specified according as follows. All computing nodes
are in the same node level. When computing nodes
can communicate to one another with the same
communication latency, they can be grouped into
the same cluster. In addition, like in the Grid’5000
testbed, if computing nodes seemly have the same
computational power with a low communication
latency, a cluster of these nodes can be defined. All
participating clusters, including computing nodes,
are in the same architecture level and communicate

through the architecture network.

3.1.3. Mapping functions. After having described
the two graphs used to model the application and the
architecture, this section defines our objectives.
When a parallel application App, represented by a

graph GT , is mapped on a distributed clusters archi-
tecture, represented by a graph GG, the execution
time of the application, ET (App), can be defined as
the execution time of the slowest task. Indeed an
application ends when all the tasks have detected
convergence and have reached the desired approx-
imation of the solution, that is why the execution
time of the application depends on the slowest task.
We define

ET (App) = max
i=1...v

(ET (Vi)) (1)

where the execution time of each task i
(i = 1 . . . v), ET (Vi) is given by

ET (Vi) = ei
wni

+
∑
j∈J

cij · wlij (2)

where ei is the computational cost of Vi, wni is the
computational power of the node Ni on which Vi is
mapped, J represents the neighbors set of Vi, cij is
the amount of communications between Vi and Vj ,
and wnij is the link latency between the computing
nodes on which are mapped Vi and Vj . We underline
here that in the AIAC model, it is impossible to
predict the number of iterations of a task. So it is
difficult to evaluate a priori the cost ei of a task. In
the remainder, we approximate ei by the cost of one
iteration.
The mapping problem is similar to the classical

graph partitioning and task assignment problem [14],
and is thus NP-complete.

3.2. Related work

In the literature of the TIG mapping, we can find
many algorithms, which can be divided into two
categories:
• Edge-cuts optimization. The aim of this class

of algorithms is to minimize the use of the
penalizing links between clusters. As tasks are
depending on neighbors, which are called here
dependencies, the goal is to choose nodes which
distance, in term of network, is small, to improve
communications between tasks. Here we can cite
Metis [15], Chaco [16] and PaGrid [17] which
are libraries containing such kind of algorithms.
The main drawback of edge-cuts algorithms is
that they do not tackle the computing nodes
heterogeneity issues. They only focus on com-
munication overheads.

• Execution time optimization. The aim
of these algorithms is to minimize the whole
execution time of the application. They look for
nodes which can provide the small execution
time of tasks using their computational power.
Here we can cite FastMap [18] and MiniMax
[19] as such kind of algorithms. QM [20] is also
an algorithm of this category, but it aims to
find for each task the node which can provide
the best execution time. QM works at the task
level, whereas others work at the application
level.

The two classes of algorithms may fit with our
goals, because in our model we have both the com-
putational power of nodes and communication costs
may influence the applications performances.

Nevertheless, to the best of our knowledge, none
of the existing algorithms take into consideration the
specificities of the AIAC model (see next section).

4. AIAC mapping

In this section we present the specificities of the
AIAC model, which are interesting in the mapping
problem, and the solution we propose: the AIAC QM
algorithm, which is an extended version of the QM
algorithm.

4.1. Specificities of the AIAC mapping
problem

An important point to take into consideration
in the AIAC model is that we do not allow the
execution of multiple tasks on the same computing
node. This comes from the fact that the targeted
architectures are volatile distributed environments.
Assigning multiple tasks to a node provides a fall of
performances when this node fails. Indeed we should
redeploy all of the tasks from this node to another
one, using last saves, which implies to search a new
available computing node, transfer saves to it and
restart the computation from this point (which could
be far from this just before the failure).

Nevertheless, in order to benefit of multi-cores ar-
chitectures, we use a task level parallelism by running
multi-threaded sequential solver for example.

Another important point in the AIAC model is
that we should take into account precisely the lo-
cality issue. This comes from the fact that in this
model, the faster and more frequently a task receives
its dependencies, the faster it converges. Moreover,
as the JaceP2P-V2 environment is fault tolerant and
tasks save checkpoints on their neighbors, it is more
efficient to save on near nodes than on far ones.

4.2. AIAC Quick-quality Map

We present here the solution we propose, called
AIAC QM algorithm, to address the AIAC mapping
problem. We decided to improve the Quick-quality
Map (QM) algorithm since it is one of the most
accurate to address the TIG mapping problem.
In its original version, this algorithm aims at priv-

ileging the computational power of nodes. Indeed, its
aim is to find the more powerful node to map a task
on. Moreover, a part of this algorithm is designed to
map multiple tasks on the same node, in order to
improve local communications. This solution can be
efficient if communications between tasks are heavy
and if we consider that computing nodes are stable
and not volatile. This last point is in contradiction
with our model, as we authorize only the execution
of one task on a single node – this allows to lose only
the work of a single task in case of node’s fault, with a
low cost on restarting mechanism. Instead assigning
multiple tasks on the same computing node, our
mapping algorithm tries to keep tasks locality, to
improve communications, by trying to assign tasks
to computing nodes in the neighborhood of which
their neighbors are mapped on.
The pseudo-code of AIAC QM is given in Algo-

rithm 1.
All nodes are first sorted in descending order ac-

cording to their computation power, and all tasks are
mapped on these nodes according to their identifier
(they are also marked as “moveable”, that means
that each task can be moved from a node to another).
As in the original QM algorithm, AIAC QM keeps
track of the number of rounds r (r > 0), that all tasks
have been searched for a better node. This allows
to reduce at each round the number of considered
nodes. While there is at least one moveable task,
it performs for each moveable task the search for a
better node. It chooses a set of nodes, f ·nr , where f is
defined as the search factor and n is the number of
nodes. r and f ∈]0, 1] control the portion of nodes
that will be considered where more numerous the
rounds are, the less the considered nodes will be.
Then the algorithm estimates the execution time
ET (v) of the task on each node. If it is smaller than
the current node on which the task is mapped on,
this node becomes the new potential node for task
ti.
After having randomly searched for a new node,

the AIAC QM tries to map the task on nodes that are
neighbors of nodes of which the dependencies of ti are
mapped on. This is one of the major modification to
the original QM algorithm. It introduces a little part
of “edge-cuts” optimization. In the original version,
it tries to map the task ti on the same node of
one as its dependencies. As explain in 4.1, this is
not an acceptable solution in our case. Instead, the

Algorithm 1: The AIAC QM
Input: Sets of tasks and computing nodes
Output: Mapping of tasks to nodes
sort nodes by descending power
map tasks in order on nodes
set all tasks moveable
r ← 1
while one task is moveable do

for each task ti && ti is moveable do
nc ← current node of ti
nn ← ti

for k = 0; k < f ·n
r ; k + + do

select random node nr in [0, nr]
if ET(ti,nr) < ET(ti,nn) then

nn ← nr
end

end
for each node nv near dep(ti) do

if ET(ti,nv) < ET(ti,nn) then
nn ← nv

end
end
if nn 6= nc then

map ti on nn
update ET of ti and dep(ti)

end
end
set ti not moveable
r ← r + 1 if all tasks have been considered

end

algorithm now searches to map task ti on nodes
which are near the ones its dependencies are mapped
on. This search requires a parameter which indicates
the maximum distance at which nodes should be
from the node of dependencies of ti.
At the end of the algorithm, if a new node is found,

ti is mapped on and its execution time is updated
and ti is set to “not moveable”. The execution time
of each of its dependencies is also updated, and if
this new execution time is higher than the previous,
the task is set to “moveable”. And finally, if all tasks
have been considered in this round, r is incremented.

The complexity of the AIAC QM algorithm is
about O(n2 · t · ln(r)). This complexity is the same
as the original (details are given in [20], with a an
increase of a factor n, corresponding to the edge-cuts
part.

5. Experimentation

We now describe the experiments we have con-
ducted and their components, to evaluate the effects
of the AIAC QM algorithm on application execution
time.

5.1. The NAS Parallel Benchmark Kernel
CG

We used the “Kernel CG” of the NAS Parallel
Benchmarks (NPB) [21] to evaluate the performances
of the mapping algorithm. This benchmark is de-
signed to be used on large architectures, because it
tests communications over latency networks, by pro-
cessing unstructured matrix vector multiplication. In
this benchmark, a Conjugate Gradient is used to
compute an approximation of the smallest eigenvalue
of a large, sparse and symmetric positive definite
matrix, by the inverse power method. In our tests,
the whole matrix contains nonzero values, in order
to stress more communications. As the Conjugate
Gradient method cannot be executed with the asyn-
chronous iteration model we have replaced it by an-
other method called the multisplitting method. This
latter supports the asynchronous iterative model.
With the multisplitting algorithm, the A matrix

is split into horizontal rectangle parts, as Figure 6
shows. Each of these parts is affected to a processor –
so the size of data depends on the matrix size but also
on the number of participating nodes. In this way, a
processor is in charge of computing its XSub part
by solving the following subsystem: ASub×XSub =
BSub−DepLeft×XLeft−DepRight×XRight
After solving XSub, the result must be sent to

other processors which depend on it.

BX

ADepLeft DepRight

X
L

eft
X

R
ight

Figure 6. Data decomposition for the multisplitting
method implementation

The multisplitting method can be decomposed into
four phases:
1) Data decomposition. In this phase, data

are allocated to each processor assuming the
decomposition exposed on figure 6. Then, each
processor iterates until converge on the follow-
ing.

2) Computation. At the beginning of the com-
putation, each processor computes BLoc =
BSub − DepLeft × XLeft − DepRight ×
XRight. Then, it solves ASub×XSub = BLoc

by using a multi-threaded sequential version of
the Conjugate Gradient method.

3) Data exchange. Each processor sends its
XSub part to its neighbors. Here, the neighbor-
hood is closely related to the density of the A
matrix. Clearly, a dense matrix implies an all-
to-all communication scheme while a matrix
with a low bandwidth reduces the density of
the communication scheme.

4) Convergence detection Each processor com-
putes its local convergence and sends it to a
server node. When this one detects that each
processor has converged, it stops the whole
computation process.

For more details about this method, interested
readers are invited to see [4]. In our benchmark, the
sequential solver part of the multisplitting method is
the Conjugate Gradient, using the MTJ [22] library.
Its implementation is multi-threaded, so it benefits
from multi-core processors.

We point out here that this benchmark is a typical
AIAC application. The general form of the TIG for
this application is given by Figure 7.

3130

2928 3332

Figure 7. Part of the form of the TIG representing an
instance of the NAS Kernel CG application

This figure shows 6 tasks, which are represented by
a circle in which the identifier of the task is given.
In our study, we consider that the computational
costs of tasks are approximately the same and that
the communications costs also the same (this comes
from the difficulty to evaluate real costs in the AIAC
model). Doted lines represent communications with
tasks which are not represented on the figure. We
can see here that each task has four neighbors (the
two previous and the two next). This amount of
neighbors is directly related to the bandwidth of
the matrix (in this example the bandwidth is very
small). For more details about the influence of the
bandwidth on the amount of neighbors, interested
readers are invited to see [23].

For our experiments the bandwidth of matrices has
been reduced in order to limit the dependencies and
we fixed it to 35, 000. This bandwidth size generates,
according to the problem’s size, between 10 and 25
neighbors per tasks.

5.2. The Grid’5000 platform

The platform used for our tests, called Grid’5000
[7], is a French nationwide experimental set of clus-
ters which provides a configurable and controllable
instrument. We can find many clusters with different
kinds of computers with various specifications and
software.

Toulouse

Bordeaux

Rennes
Orsay

Lille

Nancy

GrenobleLyon

Sophia

Figure 8. The Grid’5000 sites map

Clusters are spread over 9 sites, as can be seen
on Figure 8, and the computing power represents
more than 5000 computing cores interconnected by
the “Renater” network. This network is the national
network for research and education; it provides a
large bandwidth with high latency. Intra-clusters
networks present small bandwidth and low latencies.

5.3. Other mapping algorithms

In this section we present the two other mapping
algorithms we used in our experiments to compare
the performances of the AIAC QM algorithm. The
first one was used to evaluate the benefits of a
mapping solution in section 2.2. The second one was
used to show the differences between the two map-
ping class, the “execution time” and the “edge-cuts”
optimizations, as it is a fully edge-cut optimization
based mapping algorithm.

5.3.1. A Simple Mapping algorithm. The Sim-
ple Mapping algorithm (SMa) was designed to show
the benefits of a mapping algorithm in the JaceP2P-
V2 platform. Algorithm 2 gives the pseudo-code of
the Simple Mapping algorithm.
The algorithm puts each node in a cluster entity.

Then it sorts clusters by their size, from the higher
to the lower. Finally, all tasks are mapped in order
on the sorted clusters; each task is assigned to a
particular computing node of the chosen cluster.

Algorithm 2: The Simple Mapping algorithm
Input: Sets of tasks and computing nodes
Output: Mapping of tasks to nodes
sort computing nodes by cluster
sort clusters by size, from higher to lower
map tasks in order on sorted clusters

5.3.2. Edge-cuts optimization. As explained in
section 3, the asynchronous iteration model is so spe-
cific and unpredictable that we would like to evaluate
the second kind of mapping algorithm, which aims
to optimize the “edge-cuts”. We choose the Farhat’s
algorithm [24], which has the ability to divide the
graph into any number of partitions, thereby avoid-
ing recursive bisection.
The adapted version of this algorithm, Farhat’s

Edge-Cut (F-EC), evaluated in the JaceP2P-V2 en-
vironment is described in Algorithm 3.

Algorithm 3: The Fahrat’s Edge-Cut algorithm
Input: Sets of tasks and computing nodes
Output: Mapping of tasks to nodes
sort nodes by cluster
lTasks← sort tasks by dep degree
changeCluster ← true
cTasks← empty;
while one task is not mapped do

if changeCluster then
curCluster ← nextCluster()
places← size(curCluster)
changeCluster ← false
mTasks← empty

end
if no task in cTasks then

cTasks← first task from lTasks
end
curTask ← first task in cTasks
if (1+dep(curTask) · δ) <= places) then

remove curTask from cTasks
add curTask in mTasks
places← places− 1
add dep(curTask) in cTasks

else
changeCluster ← true
associate mTasks with curCluster

end
end

This algorithm aims to do a “clusterization” of the
tasks. First, it groups computing nodes in clusters,
which are sorted according to their number of nodes,
from the higher to the lower. Tasks are ordered
following their dependency degree, starting from the
higher to the lower. Tasks in the top of the list have

a higher priority to be mapped. Next, the algorithm
tries to map on each cluster the maximum number
of tasks. To map a task on a cluster, the algorithm
evaluates if there is enough place to map the task and
some of its dependencies. This amount of dependen-
cies is fixed by a factor δ, which is a parameter of the
algorithm. In the positive case, the task is mapped
on the current cluster and its dependencies become
priority tasks to be mapped. This allows to keep the
focus on the communicating tasks locality.

5.4. Experiments

After having described the different components
of the experiments, we now present the impacts of
the AIAC QM mapping on applications running with
JaceP2P-V2 on a heterogeneous distributed clusters
architecture. In the following, we note “heterogeneity
degree” the degree of heterogeneity of distributed
clusters; it is the ratio between the average and the
standard deviation of the computing nodes power.
This heterogeneity degree may vary from 0, nodes are
homogeneous, to 10, nodes are totally heterogeneous.
In these experiments, we consider that there is no
computing nodes fault during applications execution.
The application used to realize these experiments

is the KernelCG of the NAS parallel benchmark, in
the multi-splitting version. Two problem sizes were
used: one using a matrix of size 550, 000 (named
“class E”) using 64 computing nodes and the other
using a matrix of size 5, 000, 000 (named “class F”)
using 128 nodes.

5.4.1. About heterogeneity. The first experi-
ments concern the study of the impact of the het-
erogeneity of the computing nodes on the mapping
results. Heterogeneity takes an important place in
the high performance computing on grid, all the more
so when using the asynchronous iteration model.
As mapping algorithms take in parameter a factor

of research (for AIAC QM) and the amount of local
dependencies (for F-EC), we fixed both to 50%. That
means for AIAC QM that at each round the amount
of considering nodes would be divided by two, and for
F-EC that each task requires half of its dependencies
on the same local cluster.
Four experiments were done using four architec-

tures having different heterogeneity degrees – in two
architectures computing nodes are more heteroge-
neous than in the others. In these experiments, we
did not affect the networks heterogeneity, because
of the difficulty to disturb and control network on
Grid’5000; by default, networks are already quite
heterogeneous. We needed more than 200 computing
nodes to execute our application because of the
small capacity of some clusters to execute the largest
problems (there is not enough memory).

The first architecture, Arc1.1, was composed of
113 computing nodes representing 440 computing
cores, spread over 5 clusters in 4 sites. In Arc1.1 we
used bi-cores (2 clusters), quadri-cores (2 clusters)
and bi-quadri-cores (1 cluster) machines. Its hetero-
geneity degree value is 6.43. This architecture was
used to run class E of the CG application using 64
computing nodes. The second architecture, Arc1.2,
used to execute class F of the CG application, using
128 computing nodes, was composed of 213 comput-
ing nodes representing 840 computing cores, with a
heterogeneity degree of 6.49. This architecture was
spread on the same clusters and sites as Arc1.1. The
results of the experiments on Arc1.1 and Arc1.2 are
given in Table 2 and Table 3, which give the gains in
execution time obtained in comparison to the version
without mapping.

Algorithm None SMa AIAC QM F-EC

Execution time 150s 110s 101s 90s

Gains – 27% 33% 40%

Table 2. Gains in time of the execution of the class E
of the CG application on Arc1.1 using 64 computing

nodes, with mapping algorithms

Algorithm None SMa AIAC QM F-EC

Execution time 403s 265s 250s 218s

Gains – 34% 38% 46%

Table 3. Gains in time of the execution of the class F
of the CG application on Arc1.2 using 128 computing

nodes, with mapping algorithms

At first, we can see that the Simple Mapping
algorithm, though it is simple, provides a signifi-
cant improvement of application execution time. This
highlights that JaceP2P-V2 really needs a mapping
algorithm in order to be more efficient. Then, we can
see that the F-EC and the AIAC QM algorithms pro-
vide a better mapping than the Simple Mapping al-
gorithms, we can see a significant difference between
both algorithms. This comes from the homogeneity
of clusters. In this case, the F-EC algorithm is more
efficient since the minimization of the communica-
tions becomes more important than the tackle of
the computational power heterogeneity problem. The
effect is that tasks do less iterations as they receive
more frequently updated data from their neighbors.
In addition, as tasks and their dependencies are on
the same cluster, communications are improved, but
also as computations take approximately the same
time, the amount of iterations is reduce and the
algorithm can converge more quickly.

Another important positive point is that gains are
scalable, which allows to foresee big improvements

for very large applications.

The third architecture, Arc2.1, was composed of
112 computing nodes, representing 394 computing
cores, spread over 5 clusters in 5 sites. In this archi-
tecture we used bi-cores (3 clusters), quadri-cores (1
cluster) and bi-quadri-cores (1 cluster) machines. Its
heterogeneity degree’s value is 8.41. This architecture
was used to run class E of the CG application, using
64 computing nodes. The fourth architecture, Arc2.2,
used to execute class F of the CG application, using
128 computing nodes, was composed of 212 comput-
ing nodes representing 754 computing cores, with a
degree of heterogeneity of 8.44. This architecture was
spread on the same clusters and sites as Arc2.1. The
results of the experiments on Arc2.1 and Arc2.2 are
given in Table 4 and Table 5, which give the gains in
execution time obtained in comparison to the version
without mapping.

Algorithm None SMa AIAC QM F-EC

Execution time 498s 341s 273s 385s

Gains – 32% 45% 23%

Table 4. Gains in time of the execution of the class E
of the CG application on Arc2.1 using 64 computing

nodes, with mapping algorithms

Algorithm None SMa AIAC QM F-EC

Execution time 943s 594s 453s 660s

Gains – 37% 52% 30%

Table 5. Gains in time of the execution of the class F
of the CG application on Arc2.2 using 128 computing

nodes, with mapping algorithms

To begin with, these experiments confirm that a
mapping algorithm is needed and that improvements
are always scalable. Then, we can see that the F-
EC algorithm falls in performances and AIAC QM
is improved. What is surprising is that the Simple
Mapping algorithm is better than F-EC. This can
be explained by the fact that as computing nodes are
quite heterogeneous, computations are not the same,
so it is not significant to map dependencies close to
tasks. In this case, the most important is the power of
computing nodes. So, in this kind of architecture, it
is more efficient to choose the best computing nodes
to compute iterations more quickly and to improve
the convergence detection.
Here, it is important to note that the AIAC QM

algorithm offers a gain of about 50% on the execution
time, that is to say that the application takes half of
the execution time than without mapping.

5.4.2. Parameters variation. After having eval-
uated mapping algorithms on the heterogeneity of
distributed clusters, we now propose to change the
parameters of AIAC QM and F-EC algorithms, in
order to determine which values are the most accu-
rate.
To do these experiments, we used an architecture

composed of 122 computing nodes representing 506
computing cores, spread over 5 clusters in 5 sites. In
this architecture we used bi-cores (2 clusters), quadri-
cores (2 clusters) and bi-quadri-cores (1 cluster)
machines. Its heterogeneity degree value is 4.98.

The parameters of each algorithm, f (the search
factor) for AIAC QM and δ (the amount of local de-
pendencies) for F-EC, varied both with values 10%,
50% and 90%. We used the CG multi-splitting appli-
cation on 64 computing nodes. The results of these
experiments are given in Table 6. Results exposed
in this table represent the gains in execution time
provided by each algorithm with different parameters
values.

Parameters 10% 50% 90%

SMa 30%

AIAC QM 30% 32% 30%

F-EC 40% 37% 45%

Table 6. Gains in execution time with mapping
algorithms parameters variations using the class E of

the CG application using 64 computing nodes

For the AIAC QM algorithm, we can note that
the best value for its parameter f is about 50%, but
its impact is not big enough to indicate a specific
configuration. Finally, and this is not surprising, the
F-EC algorithm is more efficient with a factor δ near
100%, which directly comes from its aim. But we can
see that it is more efficient to have a factor around
10% than having one around 50%.

We can note here, with a lower heterogeneity
degree than in previous experiments, gains are lower
and the difference between AIAC QM and F-EC
(with parameters at 50%) is lower. It can be ex-
plained as the fact that more the heterogeneity de-
gree tends to 0 more computing nodes are the same,
so a mapping solution will not be efficient, except
one only optimizing network latency.

6. Conclusion and future works

In this paper we have presented a specific map-
ping algorithm for the AIAC model, called AIAC
QM. This algorithm is based on the execution time
optimization but it also includes a small degree of
edge-cuts optimization. Experiments on a real large
scale architecture of a typical AIAC application show

that the AIAC QM mapping algorithm is efficient
on architectures with a high heterogeneity degree.
This can be explained by the fact that all iteration
computations are quite different, for our example,
and the convergence is more quickly detected as
the more powerful computing nodes progress in the
computation. The F-EC algorithm, which is based on
the “edge-cuts” optimization, is meanwhile efficient
on architectures with a low heterogeneity degree.
This can be explained by the fact that in such
an environment, it is more accurate for a task to
have its dependencies locally on the same cluster in
order to have efficient communications and to allow
iterations to be computed together, which improves
the convergence detection speed. Experiments we
conducted have shown gains in execution time up to
50%, which denotes a division by 2 of this execution
time, for a typical AIAC application on more than
700 computing cores. As we did not influence the net-
work’s heterogeneity, the evaluation of the network
impact on the application execution time would be
one of our next work.
Our future works concern the amelioration of the

AIAC QM algorithm, in order to improve it on
homogeneous distributed architectures. As the F-EC
mapping algorithm is efficient on such architectures,
we will give a more important consideration to the
edge-cuts part of AIAC QM. Another important
point is to take into consideration the fault tolerance
problem. In this study we have realized our experi-
ments without computing node fault, which is not the
real case. We have to take into account the AIAC QM
algorithm about this important parameter. First we
have to efficiently choose new nodes to replace failed
ones. Secondly, as we do checkpointing to save tasks’
states, we have to efficiently choose backup nodes
not to fall in case a whole cluster fails, as we save on
neighbors (which are in general on the same cluster
for communication efficiency reasons), an important
part of the application is lost and we cannot restart
this part; so the whole application fails. A trade-
off should be done by having some saving nodes in
external clusters.

Acknowledgements

This work was supported by the European Interreg
IV From-P2P project and the region of Franche-
Comté.
Experiments presented in this paper were carried

out using the Grid’5000 [7] experimental testbed,
being developed under the INRIA ALADDIN devel-
opment action with support from CNRS, RENATER
and several Universities as well as other funding
bodies.

References

[1] S.R.H. Hoole. Optimal design, inverse problems and
parallel computers. IEEE Transactions on Magen-
tics, 27(5):4146–4149, September 1991.

[2] G. von Laszewski, M. Parashar, A.G. Mohamed,
and G.C. Fox. On the parallelization of blocked
lu factorization algorithms on distributed memory
architectures. In Supercomputing, pages 170–179,
November 1992.

[3] J. K. Reid (Ed). On the method of conjugate
gradients for the solution of large sparse systems of
linear equations, pages 231–254. Academic Press Inc,
March 1971.

[4] J. Bahi, S. Contassot-Vivier, and R. Couturier. Par-
allel Iterative Algorithms: from Sequential to Grid
Computing, volume 1 of Numerical Analysis & Scien-
tific Computating, chapter Asynchronous Iterations,
pages 124–131. Chapman & Hall/CRC, 2007.

[5] J. Bahi, S. Contassot-Vivier, and R. Couturier.
Performance comparison of parallel programming
environments for implementing AIAC algorithms.
Journal of Supercomputing, 35(3):227–244, 2006.

[6] J.-C. Charr, R. Couturier, and D. Laiymani.
Jacep2p-v2: A fully decentralized and fault tolerant
environment for executing parallel iterative asyn-
chronous applications on volatile distributed archi-
tectures. In GPC, pages 446–458, 2009.

[7] Grid’5000. http://www.grid5000.fr.

[8] T. Yang and A. Gerasoulis. Dsc: Scheduling parallel
tasks on an unbounded number of processors. IEEE
Trans. Parallel Distrib. Syst., 5(9):951–967, 1994.

[9] V. Sarkar. Partitioning and Scheduling Parallel Pro-
grams for Multiprocessors. MIT Press, Cambridge,
MA, USA, 1989.

[10] Y.-K. Kwok and I. Ahmad. Dynamic critical-
path scheduling: An effective technique for allocating
task graphs to multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 7(5):506–521,
1996.

[11] H. Topcuouglu, S. Hariri, and M. Wu. Performance-
effective and low-complexity task scheduling for het-
erogeneous computing. IEEE Trans. Parallel Dis-
trib. Syst., 13(3):260–274, 2002.

[12] D. L. Long and L. A. Clarke. Task interaction graphs
for concurrency analysis. In ICSE, pages 44–52,
1989.

[13] D. L. Long L. A. and Clarke. Task interaction
graph: An intermediate representation for concur-
rency. Technical report, University of Massachusetts,
Amherst, MA, USA, 1988.

[14] M. Garey and D. Johnson. Computer and
Intractability : a guide to the Theory of NP-
Completness. W.H. Freeman & Co, 1979.

[15] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

[16] B. Hendrickson and R. W. Leland. The Chaco User’s
Guide. Sandia National Laboratory, Albuquerque,
1995.

[17] S. Huang, E. E. Aubanel, and V. C. Bhavsar. Pagrid:
A mesh partitioner for computational grids. J. Grid
Comput., 4(1):71–88, 2006.

[18] S. Sanyal, A. Jain, S. K. Das, and Rupak Biswas.
A hierarchical and distributed approach for map-
ping large applications to heterogeneous grids using
genetic algorithms. In CLUSTER, pages 496–499,
2003.

[19] S. Kumar, S. K. Das, and Rupak Biswas. Graph par-
titioning for parallel applications in heterogeneous
grid environments. In IPDPS, 2002.

[20] P. Phinjaroenphan. An Efficient, Pratical, Portable
Mapping Technique on Computational Grids. PhD
thesis, School of Computer Science and Informa-
tion technology Science, Engineering and Technol-
ogy Portfolio, RMIT University, 2006.

[21] D. Bailey, E. Barszcz, J. Barton, D. Browning,
R. Carter, L. Dagun, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. venkatakrishnan, and S. Weeratunga. The NAS
Parallel Benchmarks. Technical Report RNR-94-
007, The Numerical Aerodynamic Simalation Pro-
gram of NASA, March 1994.

[22] Matrix Toolkit Java. http://code.google.com/p/matrix-
toolkits-java/.

[23] J.-C. Charr, R. Couturier, and D. Laiymani. Parallel
numerical asynchronous iterative algorithms: Large
scale experimentations. In IPDPS, pages 1–8, 2009.

[24] C. Farhat. A simple and efficient automatic fem
domain decomposer. Computers & Structures,
28(5):579 – 602, 1988.

	Introduction
	JaceP2P-V2
	Architecture
	Benefits of mapping

	Problem description
	Model formalization
	Application modeling
	Architecture modeling
	Mapping functions

	Related work

	AIAC mapping
	Specificities of the AIAC mapping problem
	AIAC Quick-quality Map

	Experimentation
	The NAS Parallel Benchmark Kernel CG
	The Grid'5000 platform
	Other mapping algorithms
	A Simple Mapping algorithm
	Edge-cuts optimization

	Experiments
	About heterogeneity
	Parameters variation

	Conclusion and future works
	References

