
Mapping Asynchronous Iterative Applications on Heterogeneous
Distributed Architectures

Raphaël Couturier David Laiymani Sébastien Miquée
Laboratoire d’Informatique de Franche-Comté (LIFC)

IUT de Belfort-Montbéliard,2 Rue Engel Gros, BP 27, 90016 Belfort, France
Email: {raphael.couturier,david.laiymani,sebastien.miquee}@univ-fcomte.fr

Abstract—To design parallel numerical algorithms
on large scale distributed and heterogeneous plat-
forms, the asynchronous iteration model (AIAC) may
be an efficient solution. This class of algorithm is very
suitable since it enables communication/computation
overlapping and it suppresses all synchronizations
between computation nodes. Since target architec-
tures are composed of more than one thousand het-
erogeneous nodes connected through heterogeneous
networks, the need for mapping algorithms is crucial.
In this paper, we propose a new mapping algorithm
dedicated to the AIAC model. To evaluate our map-
ping algorithm we implemented it in the JaceP2P
programming and executing environment dedicated
to AIAC applications and we conducted a set of ex-
periments on the Grid’5000 testbed. Results are very
encouraging and show that the use of our algorithm
brings an important gain in term of execution time
(about 40%).

Keywords-Mapping algorithms; Distributed clus-
ters; Parallel iterative asynchronous algorithms; Het-
erogeneous distributed architectures.

I. Introduction

Nowadays scientists of many domains, like climatic
simulation or biological research, need large and pow-
erful architectures to compute their large applications.
Distributed clusters architectures, which are part of the
grid architecture, are one of the best architectures used
to solve such applications with an acceptable execution
time. These architectures provide a lot of heterogeneous
computing nodes interconnected by a high performance
network, but even with the greatest efforts of their
maintainers, there are latency and computation capacity
differences between clusters of each site.

In order to efficiently use this massive distributed com-
putation power, numerous numerical algorithms have
been modified. These algorithms can be broadly clas-
sified into two categories. First, direct methods, which
give the exact solution of the problem using a finite
number of operations (e.g. Cholesky, LU. . .). These
methods cannot be applied to all kinds of numerical

This work was supported by the European Interreg IV From-
P2P project and the region of Franche-Comté

problems. Generally, they are not well adapted to very
large problems. Then iterative methods, that repeat the
same instructions until a desired approximation of the
solution is reached – we say that the algorithm has con-
verged. Iterative algorithms constitute the only known
approach to solving some kinds of problems and are
easier to parallelize than direct methods. The Jacobi
or Conjugate Gradient algorithms are examples of such
iterative methods.

In the rest of this paper we only focus on iterative
methods. Now to parallelize this kind of algorithm, two
classes of parallel iterative models can be described. In
the synchronous iteration model after each iteration a
node sends its results to its neighbors and waits for the
reception of all dependency messages from them to start
the next iteration. This results in large idle times and is
equivalent to a global synchronization of nodes after each
iteration. These synchronizations can strongly penalize
the overall performance of the application particularly in
case of large scale platforms with high latency network.
Furthermore, if a message is lost, its receiver will wait
forever for this message and the application will be
blocked. In the same way, if a machine fails, all the
computation will be blocked.

Itér. 4

Processor 1

Processor 2

Time

Iter. 1

Iter. 1

Iter. 2

Iter. 2

Iter. 3

Iter. 3

Iter. 4

Iter. 5

Iter. 5

Iter. 6

Figure 1. Two processors computing in the Asynchronous Itera-
tion - Asynchronous Communication (AIAC) model

In the asynchronous iteration model a node sends
its results to its neighbors and starts immediately the
next iteration with the last received data. These data
could be data from previous iterations, because the most
recent data has not arrived in time or neighbors have not
finish their current iteration. The receiving and sending
mechanisms are asynchronous and nodes do not have
to wait for the reception of dependency messages from
their neighbors. Consequently, there is no more idle
time between two iterations. Furthermore, this model

is tolerant to messages loss and even if a node dies,
the remaining nodes continue the computation, with
the last data the failed node sent. Unfortunately, the
asynchronous iteration model generally requires more
iterations than the synchronous one to converge to the
solution.

This class of algorithms is very suitable in a dis-
tributed clusters computing context because it sup-
presses all synchronizations between computation nodes,
tolerates messages loss and enables the overlapping
of communications by computations. Interested read-
ers might consult [1] for a precise classification and
comparison of parallel iterative algorithms. In this way,
several experiments [1] show the relevance of the AIAC
algorithms in the context of distributed clusters with
high latency between clusters. These works underline the
good adaptability of AIAC algorithms to network and
processor heterogeneity.

As we aim to solve very large problems on heteroge-
neous distributed architectures, in the rest of this study
we only focus on the asynchronous iteration model. In
order to efficiently use such algorithms on distributed
clusters architectures, it is essential to map the ap-
plication’s tasks to the best sub-sets of nodes of the
target architecture. This mapping procedure must take
into account parameters such as network heterogeneity,
computing nodes heterogeneity and tasks heterogeneity
in order to minimize the overall execution time of the
application. To the best of our knowledge, there exits
no algorithm which specifically addresses the mapping
of AIAC applications on distributed architectures. The
aim of this paper is to propose a new mapping algorithm
dedicated to AIAC applications and to implement it
into a real large scale computing platform, JaceP2P-
V2. Experiments conducted on the Grid’5000 testbed
with more than 400 computing cores show that this new
algorithm enhances the performance of JaceP2P-V2 by
about 40% for a real and typical AIAC application.
The rest of this paper is organized as follows. Section

II presents the JaceP2P-V2 middleware. We focus here
on one of the main drawbacks of this platform: its lack
of an efficient mapping strategy. Section III presents our
mapping problem and quotes existing issues to address
it. Section IV describes the specificities of the AIAC
model and details the main solution we propose to
address the AIAC mapping problem. In section V we
describe the experiments we have conducted, with their
different components and results. These results were
conducted on the Grid’5000 testbed with more than 400
computing cores and show an important gain (about
40%) of the overall execution time for a typical AIAC
application, i.e. based on the NAS Parallel Benchmark.
Finally, we give some concluding remarks and plan our
future work in section VI.

II. JaceP2P-V2

JaceP2P-V2 [2] is a distributed platform implemented
using the Java programming language and dedicated
to developing and executing parallel iterative asyn-
chronous applications. JaceP2P-V2 executes parallel it-
erative asynchronous applications with dependencies be-
tween computing nodes. In addition, JaceP2P is fault
tolerant which allows it to execute parallel applications
over volatile environments and even for stable environ-
ments like local clusters, it offers a safer and crash free
platform. To our knowledge this is the only platform
dedicated to designing and executing AIAC algorithms.

The JaceP2P-V2 architecture, is composed of three
main entities:
• The first entity is the “super-node”. Super-nodes

form a circular network and store, in registers,
the identifiers of all the computing nodes that
are connected to the platform and that are not
executing any application. A super-node regularly
receives heartbeat messages from the computing
nodes connected to it. If a super-node does not
receive a heartbeat message from a computing node
for a given period of time, it declares that this
computing node is dead and deletes its identifier
from the register.

• The second entity is the “spawner”. When a user
wants to execute a parallel application that requires
N computing nodes, he or she launches a spawner.
This one contacts a super-node to reserve the N
computing nodes plus some extra nodes. When
it receives the list of nodes from the super-node,
it transforms the extra nodes into spawners (for
fault tolerance and scalability reasons) and stores
the identifiers of the rest of the nodes in its own
register. Then each spawner becomes responsible for
a subgroup of computing nodes, starts the tasks on
the computing nodes under its command and sends
a specific register to them.

• The third entity is the “daemon”, or the computing
node. Once launched, it connects to a super-node
and waits for a task to execute. Once they begin
executing an application daemons form a circular
network which is only used in the failure detection
mechanism. Each daemon can communicate directly
with the daemons whose identifiers are in its regis-
ter. At the end of a task, the daemons reconnect to
a super-node.

To be able to execute asynchronous iterative appli-
cations, JaceP2P-V2 has an asynchronous messaging
mechanism and to resist daemons’ failures, it implements
a distributed backup mechanism called the uncoordi-
nated distributed checkpointing. For more details on the

JaceP2P-V2 platform, interested readers can refer to [2].
Benefits of mapping: In the previously described

JaceP2P-V2 environment there is no effective mapping
solution. Indeed, when a user wants to launch an appli-
cation, the spawner emits a request to the super-node,
which is in charge of available daemons. Basically, the
super-node returns the amount of requested computing
nodes by choosing in its own list. In this method, the
super-node only cares about the amount of requested
nodes and it returns in general nodes in the order of their
connection to the platform – there is no specific selection.
Distributed architectures such as distributed clusters,
are often composed of heterogeneous clusters linked via
heterogeneous networks with high latencies and band-
widths. As an example the Grid’5000 [3] testbed is com-
posed of 23 clusters spread over 9 sites. Those clusters
are heterogeneous, with computing powers starting from
bi-cores at 2GHz to bi-quad-cores at 2.83GHz with 2Gb
of memory for the first one to 8Gb for the second.
Links relying clusters are 10Gb/s capable, but as many
researchers use this platform, high latencies appear in
links between sites.

With such an architecture, it could be efficient to
assign tasks communicating with each other on the same
cluster, in order to improve communications. But, as
we use very large problems, it is quite impossible to
find clusters containing as many computing nodes as
requested. So we have to dispatch tasks over several clus-
ters. That implies a need to deal with heterogeneity in
clusters computing power and heterogeneity in network.
We should make a trade-off between both components
in order to take the best part of each one to improve the
overall performance.

In order to check if a tasks mapping algorithm would
provide performance improvement in the JaceP2P-V2
environment, we have evaluated the contributions of a
simple mapping algorithm, which is described in section
V-B1. These experiments used the NPB Kernel CG
application described in section V-A, with two problem
sizes (the given problem sizes are the sides sizes of square
matrices used) and using a distributed clusters architec-
ture composed of 102 computing nodes, representing 320
computing cores, spread over 5 clusters in 5 sites. The
results of these experiments are given in Table I.

Problem size 550, 000 5, 000, 000

Execution Time (without mapping) 141s 129s
Execution Time (with mapping) 97s 81s

Gains 31% 37%

Table I
Effects of a simple tasks mapping algorithm on

application’s execution time

As can be seen in Table I, the effects of a simple tasks

mapping algorithm are significant. This encouraged us to
look further for better task mapping algorithms. In the
next section, we describe the specificities of our model
and issues which can be exploited.

III. Problem description
A. Model formalization
1) Application modeling: In high performance com-

puting, when we want to improve the global execution
time of parallel applications we have to make an efficient
assignation of tasks to computing nodes. Usually, to
assign tasks of parallel applications to computing nodes,
scheduling algorithms are used. These algorithms often
represent the application by a graph, called DAG [4]–
[7] (Directed Acyclic Graph). In this graph, each task
is represented by a vertex which is relayed to others
by edges, which represent dependencies and communica-
tions between tasks. This means that some tasks could
not start before other ones finish their computation and
send their results. As discussed in the introduction, in
the AIAC model, there is no precedence between tasks.

Indeed, with the AIAC model, all tasks compute in
parallel at the same time. As communications are asyn-
chronous, there is no synchronization and no precedence.
During an iteration, each task does its job and sends
results to its neighbors and continues with the next
iteration. If a task receives new data from its depen-
dencies, it includes them and the computation continues
with these new data. If not all dependencies data, or
none, are received before starting the computation of
the next iteration, old data are used instead. Tasks
are not blocked on dependencies. Nevertheless regularly
receiving new data allows tasks to converge more quickly.
So, it appears that DAG are not appropriate to modeling
AIAC applications. TIG [8], [9] (Task Interaction Graph)
are more appropriate.

1 20

4 53

7 86

10

14

11

12

2

2
2

2 4

4

1

3

78

3

2

3

3

3

8

6

5

Figure 2. An example of a TIG of a nine tasks application

In the TIG model, a parallel program is represented
by a graph , as can be seen in Figure 2. This graph
GT (V,E), where V = {V1, V2, . . . Vv} is the set of |V |
vertices and E ⊂ V ×V is the set of undirectional edges.
The vertices represent tasks and the edges represent

the mutual communication among tasks. A function
ET : V → R+ gives the computation cost of tasks and
CT : E → R+ gives the communication cost for message
passing on edges. We define v = |V |, ET (Vi) = ei and
CT (Vi, Vj) = cij . For example, in Figure 2, e0 = 10
and c01 = 2, c03 = 2 and c04 = 2. Tasks in TIG
exchange information during their execution and there
is no precedence relationship among tasks; each task
cooperates with its neighbors. This model is used to
represent applications, where tasks are considered to
be executed simultaneously. Temporal dependencies in
the execution of tasks are not explicitly addressed: all
the tasks are considered simultaneously executable and
communications can take place at any time during the
computation. That is why vertices and edges are labeled
with weights describing computational and communica-
tion costs.

2) Architecture modeling: As TIG models the ap-
plication, we have to model the targeted architecture.
A distributed clusters architecture can be modeled by
a three-level-graph. The levels are architecture (a), in
our study it is the Grid’5000 grid, cluster (c) and
computing node (n) levels. Let GG(N,L) be a graph
representing a distributed clusters architecture, where
N = {N1, N2, . . . Nn} is the set of |N | vertices and L
is the set of undirectional edges. The vertices repre-
sent the computing nodes and the edges represent the
links between them. An edge Li ∈ L is an unordered
pair (Nx, Ny) ∈ N , representing a communication link
between nodes Nx and Ny. Let be |C| the number of
clusters in the architecture containing computing nodes.
A function WN : N → R+ gives the computational
power of nodes and WL : L → R+ gives the communi-
cation latency of links. We define WN(Ni) = wni and
WL(Li, Lj) = wlij .
An architecture with a three-level-graph is specified

according as follows. All computing nodes are in the
same node level. When computing nodes can commu-
nicate to one another with the same communication
latency, they can be grouped into the same cluster. In
addition, like in the Grid’5000 testbed, if computing
nodes seemly have the same computational power with
a low communication latency, a cluster of these nodes
can be defined. All participating clusters, including com-
puting nodes, are in the same architecture level and
communicate through the architecture network.

3) Mapping functions: After having described the two
graphs used to model the application and the architec-
ture, this section defines our objectives.

When a parallel application App, represented by a
graph GT , is mapped on a distributed clusters architec-
ture, represented by a graph GG, the execution time of
the application, ET (App), can be defined as the execu-

tion time of the slowest task. Indeed an application ends
when all the tasks have detected convergence and have
reached the desired approximation of the solution, that is
why the execution time of the application depends on the
slowest task. We define ET (App) = maxi=1...v(ET (Vi))
where the execution time of each task i (i = 1 . . . v),
ET (Vi) is given by ET (Vi) = ei

wni
+

∑
j∈J cij · wlij

where ei is the computational cost of Vi, wni is the
computational power of the node Ni on which Vi is
mapped, J represents the neighbors set of Vi, cij is
the amount of communications between Vi and Vj , and
wlij is the link latency between the computing nodes on
which are mapped Vi and Vj . We underline here that in
the AIAC model, it is impossible to predict the number
of iterations of a task. So it is difficult to evaluate a priori
the cost ei of a task. In the remainder, we approximate
ei by the cost of one iteration.
The mapping problem is similar to the classical graph

partitioning and task assignment problem [10], and is
thus NP-complete.

B. Related work
In the literature of the TIG mapping, we can find

many algorithms, which can be divided into two cat-
egories. First, in the Edge-cuts optimization class of
algorithms, the aim is to minimize the use of the pe-
nalizing links between clusters. As tasks are depending
on neighbors, which are called dependencies, the goal
is to choose nodes where distance, in term of network,
is small to improve communications between tasks. Here
we can cite Metis [11], Chaco [12] and PaGrid [13] which
are libraries containing such kind of algorithms. The
main drawback of edge-cuts algorithms is that they do
not tackle the computing nodes heterogeneity issues.
They only focus on communication overheads. Then,
in the Execution time optimization class of algorithms
the aim is to minimize the whole execution time of the
application. They look for nodes which can provide the
small execution time of tasks using their computational
power. Here we can cite FastMap [14] and MiniMax [15]
as such kind of algorithms. QM [16] is also an algorithm
of this category, but it aims to find for each task the node
which can provide the best execution time. QM works
at the task level, whereas others work at the application
level

The two classes of algorithms may fit with our goals,
because in our model we have both the computational
power of nodes and communication costs which may
influence the applications performance. We can also cite
partitioning tools like Scotch [17] which aims at privi-
leging the load balancing of their partitioning schemes.
Nevertheless, to the best of our knowledge, none of the
existing algorithms take into consideration the specifici-
ties of the AIAC model (see next section).

IV. AIAC mapping
A. Specificities of the AIAC mapping problem

An important point to take into consideration in the
AIAC model is that we do not allow the execution of
multiple tasks on the same computing node. This comes
from the fact that the targeted architectures are volatile
distributed environments. Assigning multiple tasks to a
node provides a fall of performance when this node fails.
Indeed we should redeploy all of the tasks from this node
to another one, using last saves, which implies to search
a new available computing node, transfer saves to it and
restart the computation from this point (which could be
far from this just before the failure).

Nevertheless, in order to benefit of multi-cores ar-
chitectures, we use a task level parallelism by running
multi-threaded sequential solver for example.

Another important point in the AIAC model is that
we should take into account precisely the locality issue.
This comes from the fact that in this model, the faster
and more frequently a task receives its dependencies,
the faster it converges. Moreover, as the JaceP2P-V2
environment is fault tolerant and tasks save checkpoints
on their neighbors, it is more efficient to save on near
nodes than on far ones.

B. AIAC Quick-quality Map
We present here the solution we propose, called AIAC

QM algorithm, to address the AIAC mapping problem.
We decided to improve the Quick-quality Map (QM)
algorithm since it is one of the most accurate method
to address the TIG mapping problem.

In its original version, this algorithm aims at prioritiz-
ing the computational power of nodes. Indeed, its aim
is to find the more powerful node to map a task on.
Moreover, a part of this algorithm is designed to map
multiple tasks on the same node, in order to improve
local communications. This solution can be efficient if
communications between tasks are heavy and if we con-
sider that computing nodes are stable and not volatile.
This last point is in contradiction with our model, as we
authorize only the execution of one task on a single node
– this allows to lose only the work of a single task in case
of node’s fault, with a low cost on restarting mechanism.
Instead assigning multiple tasks on the same computing
node, our mapping algorithm tries to keep tasks locally,
to improve communications, by trying to assign tasks
to computing nodes in the neighborhood of which their
neighbors are mapped on.

So, in this algorithm all nodes are first sorted in
descending order according to their computation power,
and all tasks are mapped on these nodes according to
their identifier (they are also marked as “moveable”; it
means that each task can be moved from a node to

another). As in the original QM algorithm, AIAC QM
keeps track of the number of rounds r (r > 0), that
all tasks have been searched for a better node. This
allows to reduce at each round the number of considered
nodes. While there is at least one moveable task, it
performs for each moveable task the search for a better
node. It chooses a set of nodes, f ·n

r , where f is defined
as the search factor and n is the number of nodes. r
and f ∈]0, 1] control the portion of nodes that will be
considered where more numerous the rounds are, the
less the considered nodes will be. Then the algorithm
estimates the execution time ET (v) of the task on each
node. If it is smaller than the current node on which the
task is mapped on, this node becomes the new potential
node for task ti.
After having randomly searched for a new node, the

AIAC QM tries to map the task on nodes that are neigh-
bors of nodes of which the dependencies of ti are mapped
on. This is one of the major modification to the original
QM algorithm. It introduces a little part of “edge-cuts”
optimization. In the original version, it tries to map the
task ti on the same node of one of its dependencies. As
explain in IV-A, this is not an acceptable solution in our
case. Instead, the algorithm now searches to map task
ti on nodes which are near the ones its dependencies
are mapped on. This search requires a parameter which
indicates the maximum distance at which nodes should
be from the node of dependencies of ti.
At the end of the algorithm, if a new node is found, ti

is mapped on and its execution time is updated and ti is
set to “not moveable”. The execution time of each of its
dependencies is also updated, and if this new execution
time is higher than the previous, the task is set to
“moveable”. And finally, if all tasks have been considered
in this round, r is incremented.

The complexity of the AIAC QM algorithm is about
O(n2·t·ln(r)). This complexity is the same as the original
algorithm (details are given in [16], with an increase of
a factor n, corresponding to the edge-cuts part).

V. Experimentation

A. The NAS Parallel Benchmark Kernel CG and the
Grid’5000 platform

We used the “Kernel CG” of the NAS Parallel Bench-
marks (NPB) [18] to evaluate the performance of the
mapping algorithm. This benchmark is designed to be
used on large architectures, because it tests communica-
tions over latency networks, by processing unstructured
matrix vector multiplication. In this benchmark, a Con-
jugate Gradient is used to compute an approximation of
the smallest eigenvalue of a large, sparse and symmetric
positive definite matrix, by the inverse power method.
In our tests, the whole matrix contains nonzero values,

in order to stress more communications. As the Con-
jugate Gradient method cannot be executed with the
asynchronous iteration model we have replaced it by
another method called the multisplitting method. This
latter supports the asynchronous iterative model.

With the multisplitting algorithm, the A matrix is
split into horizontal rectangle parts. Each of these parts
is assigned to a processor – so the size of data depends on
the matrix size but also on the number of participating
nodes. In this way, a processor is in charge of computing
its XSub part by solving the following subsystem: ASub×
XSub = BSub − DepLeft × XLeft − DepRight × XRight.
After solving XSub, the result must be sent to other

processors which depend on it.
For more details about this method, interested readers

are invited to see [1]. In our benchmark, the sequential
solver part of the multisplitting method is the Conjugate
Gradient, using the MTJ [19] library. Its implementation
is multi-threaded, to benefit from multi-core processors.

We point out here that this benchmark is a typical
AIAC application. In our study, we consider that the
computational costs of tasks are approximately the same
and that the communications costs are also the same
(this comes from the difficulty to evaluate real costs in
the AIAC model). For our experiments the bandwidth
of matrices has been reduced in order to limit the
dependencies and we fixed it to 35, 000. This bandwidth
size generates, according to the problem’s size, between
10 and 25 neighbors per tasks.

The platform used for our tests, called Grid’5000 [3],
is a French nationwide experimental set of clusters which
provides a configurable and controllable instrument. We
can find many clusters with different kinds of computers
with various specifications and software. Clusters are
spread over 9 sites, and the computing power represents
more than 5000 computing cores interconnected by the
“Renater” network. This network is the national network
for research and education; it provides a large bandwidth
with high latency. Intra-clusters networks present small
bandwidth and low latencies.
B. Other mapping algorithms
1) A Simple Mapping algorithm: The Simple Mapping

algorithm (SMa) was designed to show the benefits of a
mapping algorithm in the JaceP2P-V2 platform.

The algorithm puts each node in a cluster entity. Then
it sorts clusters by their size, from the higher to the
lower. Finally, all tasks are mapped in order on the
sorted clusters; each task is assigned to a particular
computing node of the chosen cluster.

2) Edge-cuts optimization: As explained in section
III, the asynchronous iteration model is so specific and
unpredictable that we would like to evaluate the second
kind of mapping algorithm, which aims to optimize

the “edge-cuts”. We choose the Farhat’s algorithm [20],
which has the ability to divide the graph into any num-
ber of partitions, thereby avoiding recursive bisection.

This algorithm aims to do a “clusterization” of the
tasks. First, it groups computing nodes in clusters, which
are sorted according to their number of nodes, from the
higher to the lower. Tasks are ordered following their
dependency degree, starting from the higher to the lower.
Tasks in the top of the list have a higher priority to
be mapped. Next, the algorithm tries to map on each
cluster the maximum number of tasks. To map a task
on a cluster, the algorithm evaluates if there is enough
space to map the task and some of its dependencies. This
amount of dependencies is fixed by a factor δ, which is a
parameter of the algorithm. In the positive case, the task
is mapped on the current cluster and its dependencies
become priority tasks to be mapped. This allows to keep
the focus on the communicating tasks locality.

C. Experiments
After having described the different components of the

experiments, we now present the impacts of the AIAC
QM mapping on applications running with JaceP2P-V2
on a heterogeneous distributed clusters architecture. In
the following, we note “heterogeneity degree” the degree
of heterogeneity of distributed clusters; it is the ratio
between the average and the standard deviation of the
computing nodes power. This heterogeneity degree may
vary from 0, nodes are homogeneous, to 10, nodes are
totally heterogeneous. In these experiments, we consider
that there is no computing nodes failing during applica-
tions execution.

The application used to realize these experiments is
the KernelCG of the NAS parallel benchmark, in the
multi-splitting version. Two problem sizes were used: one
using a matrix of size 550, 000 (named “class E”) using
64 computing nodes and the other using a matrix of size
5, 000, 000 (named “class F”) using 128 nodes.

Our experiments concern the study of the impact
of the heterogeneity of the computing nodes on the
mapping results. Heterogeneity is an important factor
in high performance computing in the grid all the more
so when using the asynchronous iteration model.

As mapping algorithms take in parameter a factor
of research (for AIAC QM) and the amount of local
dependencies (for F-EC), we fixed both to 50%. That
means for AIAC QM that at each round the amount of
considering nodes would be divided by two, and for F-
EC that each task requires half of its dependencies on
the same local cluster.

Four experiments were done using four architectures
having different heterogeneity degrees – in two archi-
tectures computing nodes are more heterogeneous than
in the others. In these experiments, we did not affect

the networks heterogeneity, because of the difficulty to
disturb and control network on Grid’5000; by default,
networks are already quite heterogeneous. We needed
more than 200 computing nodes to execute our appli-
cation because of the small capacity of some clusters
to execute the largest problems (there is not enough
memory). The nodes used have more than 2 GB of RAM
and both execute a Linux 64 bits distribution.

The first architecture, Arc1.1, was composed of 113
computing nodes representing 440 computing cores,
spread over 5 clusters in 4 geographically distant sites.
In Arc1.1 we used bi-cores (2 clusters), quad-cores (2
clusters) and bi-quad-cores (1 cluster) machines. Its
heterogeneity degree value is 6.43. This architecture was
used to run class E of the CG application using 64
computing nodes. The second architecture, Arc1.2, used
to execute class F of the CG application, using 128
computing nodes, was composed of 213 computing nodes
representing 840 computing cores, with a heterogeneity
degree of 6.49. This architecture was spread on the
same clusters and sites as Arc1.1. The results of the
experiments on Arc1.1 and Arc1.2 are given in Table
II and Table III, which give the gains in execution time
obtained in comparison to the version without mapping.

Algorithm None SMa AIAC QM F-EC

Execution time 150s 110s 101s 90s

Gains – 27% 33% 40%

Table II
Gains in time of the execution of the class E of the CG

application on Arc1.1 using 64 nodes

Algorithm None SMa AIAC QM F-EC

Execution time 403s 265s 250s 218s

Gains – 34% 38% 46%

Table III
Gains in time of the execution of the class F of the CG

application on Arc1.2 using 128 nodes

At first, we can see that the Simple Mapping algo-
rithm, though it is simple, provides a significant im-
provement of application execution time. This highlights
that JaceP2P-V2 really needs a mapping algorithm in
order to be more efficient. Then, we can see that the
F-EC and the AIAC QM algorithms provide a better
mapping than the Simple Mapping algorithms. We can
see a significant difference between both algorithms. This
comes from the homogeneity of clusters. In this case, the
F-EC algorithm is more efficient since the minimization
of the communications becomes more important than
the tackle of the computational power heterogeneity
problem. The effect is that tasks do less iterations as

they receive more frequently updated data from their
neighbors. In addition, as tasks and their dependencies
are on the same cluster, communications are improved,
but also as computations take approximately the same
time, the amount of iterations is reduced and the algo-
rithm can converge more quickly.

The third architecture, Arc2.1, was composed of 112
computing nodes, representing 394 computing cores,
spread over 5 clusters in 5 sites. In this architecture
we used bi-cores (3 clusters), quad-cores (1 cluster)
and bi-quad-cores (1 cluster) machines. Its heterogeneity
degree’s value is 8.41. This architecture was used to run
class E of the CG application, using 64 computing nodes.
The fourth architecture, Arc2.2, used to execute class
F of the CG application, using 128 computing nodes,
was composed of 212 computing nodes representing 754
computing cores, with a degree of heterogeneity of 8.44.
This architecture was spread on the same clusters and
sites as Arc2.1. The results of the experiments on Arc2.1
and Arc2.2 are given in Table IV and Table V, which
give the gains in execution time obtained in comparison
to the version without mapping.

Algorithm None SMa AIAC QM F-EC

Execution time 498s 341s 273s 385s

Gains – 32% 45% 23%

Table IV
Gains in time of the execution of the class E of the CG

application on Arc2.1 using 64 nodes

Algorithm None SMa AIAC QM F-EC

Execution time 943s 594s 453s 660s

Gains – 37% 52% 30%

Table V
Gains in time of the execution of the class F of the CG

application on Arc2.2 using 128 nodes

To begin with, these experiments confirm that a map-
ping algorithm is needed and that improvements are
always scalable. Then, we can see that the F-EC algo-
rithm falls in performance and AIAC QM is improved.
What is surprising is that the Simple Mapping algorithm
is better than F-EC. This can be explained by the
fact that as computing nodes are quite heterogeneous,
computations are not the same, so it is not significant
to map dependencies close to tasks. In this case, the
most important is the power of computing nodes. So, in
this kind of architecture, it is more efficient to choose
the best computing nodes to compute iterations more
quickly and to improve the convergence detection.

VI. Conclusion and future works
In this paper we have presented a specific mapping

algorithm for the AIAC model, called AIAC QM. This
algorithm is based on the execution time optimization
but it also includes a small degree of edge-cuts optimiza-
tion. Experiments show that the AIAC QM mapping
algorithm is efficient on architectures with a high hetero-
geneity degree. This can be explained by the fact that
all iteration computations are quite different, for our
example, and the convergence is more quickly detected
as the more powerful computing nodes progress in the
computation.

In our future work we plan to take into consider-
ation the fault tolerance problem. In this study we
have realized our experiments without computing node
fault, which is not the real case. We have to take into
account the AIAC QM algorithm about this important
parameter. First we have to efficiently choose new nodes
to replace failed ones. Secondly, as we do checkpointing
to save tasks’ states, we have to efficiently choose backup
nodes not to fail in case a whole cluster fails, as we save
on neighbors (which are in general on the same cluster
for communication efficiency reasons), an important part
of the application is lost and we cannot restart this part;
so the whole application fails. A trade-off should be done
by having some saving nodes in external clusters.

References
[1] J. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel

Iterative Algorithms: from Sequential to Grid Comput-
ing, volume 1 of Numerical Analysis & Scientific Compu-
tating, chapter Asynchronous Iterations, pages 124–131.
Chapman & Hall/CRC, 2007.

[2] J.-C. Charr, R. Couturier, and D. Laiymani. Jacep2p-v2:
A fully decentralized and fault tolerant environment for
executing parallel iterative asynchronous applications on
volatile distributed architectures. In GPC, pages 446–
458, 2009.

[3] Grid’5000. http://www.grid5000.fr.

[4] T. Yang and A. Gerasoulis. Dsc: Scheduling parallel
tasks on an unbounded number of processors. IEEE
Trans. Parallel Distrib. Syst., 5(9):951–967, 1994.

[5] V. Sarkar. Partitioning and Scheduling Parallel Pro-
grams for Multiprocessors. MIT Press, Cambridge, MA,
USA, 1989.

[6] Y.-K. Kwok and I. Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task
graphs to multiprocessors. IEEE Transactions on Par-
allel and Distributed Systems, 7(5):506–521, 1996.

[7] H. Topcuouglu, S. Hariri, and M. Wu. Performance-
effective and low-complexity task scheduling for hetero-
geneous computing. IEEE Trans. Parallel Distrib. Syst.,
13(3):260–274, 2002.

[8] D. L. Long and L. A. Clarke. Task interaction graphs
for concurrency analysis. In ICSE, pages 44–52, 1989.

[9] D. L. Long L. A. and Clarke. Task interaction graph:
An intermediate representation for concurrency. Techni-
cal report, University of Massachusetts, Amherst, MA,
USA, 1988.

[10] M. Garey and D. Johnson. Computer and Intractability :
a guide to the Theory of NP-Completness. W.H. Freeman
& Co, 1979.

[11] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partioning irregular graphs. SIAM
Journal on Scientific Computing, 20(1):359–392, 1998.

[12] B. Hendrickson and R. W. Leland. The Chaco User’s
Guide. Sandia National Laboratory, Albuquerque, 1995.

[13] S. Huang, E. E. Aubanel, and V. C. Bhavsar. Pagrid:
A mesh partitioner for computational grids. J. Grid
Comput., 4(1):71–88, 2006.

[14] S. Sanyal, A. Jain, S. K. Das, and Rupak Biswas. A
hierarchical and distributed approach for mapping large
applications to heterogeneous grids using genetic algo-
rithms. In CLUSTER, pages 496–499, 2003.

[15] S. Kumar, S. K. Das, and Rupak Biswas. Graph par-
titioning for parallel applications in heterogeneous grid
environments. In IPDPS, 2002.

[16] P. Phinjaroenphan. An Efficient, Pratical, Portable
Mapping Technique on Computational Grids. PhD the-
sis, School of Computer Science and Information tech-
nology Science, Engineering and Technology Portfolio,
RMIT University, 2006.

[17] C. Chevalier and F. Pellegrini. Pt-scotch: a tool for
efficient parallel graph ordering. Parallel Computing, 6-
8(34):338–331, 2008.

[18] The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Resources/Software/npb.html.

[19] Matrix Toolkit Java. http://code.google.com/p/matrix-
toolkits-java/.

[20] C. Farhat. A simple and efficient automatic fem domain
decomposer. Computers & Structures, 28(5):579 – 602,
1988.

	Introduction
	JaceP2P-V2
	Problem description
	Model formalization
	Application modeling
	Architecture modeling
	Mapping functions

	Related work

	AIAC mapping
	Specificities of the AIAC mapping problem
	AIAC Quick-quality Map

	Experimentation
	The NAS Parallel Benchmark Kernel CG and the Grid'5000 platform
	Other mapping algorithms
	A Simple Mapping algorithm
	Edge-cuts optimization

	Experiments

	Conclusion and future works
	References

