
MAHEVE: An Efficient Reliable Mapping of
Asynchronous Iterative Applications on Volatile

and Heterogeneous Environments ?

Raphaël Couturier, David Laiymani and Sébastien Miquée
University of Franche-Comté LIFC laboratory

IUT Belfort-Montbéliard, 2 Rue Engel Gros
BP 27 90016 Belfort, France

{raphael.couturier,david.laiymani,sebastien.miquee}@univ-fcomte.fr

Abstract. With the emergence of massive distributed computing re-
sources, such as grids and distributed clusters architectures, parallel pro-
gramming is used to benefit from them and execute problems of larger
sizes. The asynchronous iteration model, called AIAC, has been proven
to be an efficient solution for heterogeneous and distributed architec-
tures. An efficient mapping of applications’ tasks is essential to reduce
their execution time. In this paper we present a new mapping algorithm,
called MAHEVE (Mapping Algorithm for HEterogeneous and Volatile
Environments) which is efficient on such architectures and integrates a
fault tolerance mechanism to resist computing nodes failures. Our exper-
iments show gains on a typical AIAC application execution time of about
55%, executed on distributed clusters architectures containing more than
400 computing cores with the JaceP2P-V2 environment.

1 Introduction

Nowadays, scientific applications require a great computation power to solve
large problems. Though personal computers are becoming more powerful, in
many cases they are not sufficient. One well adapted solution is to use computers
clusters in order to combine the power of many machines. Distributed clusters
form such an architecture, providing a great computing power, by aggregating
the computation power of multiple clusters spread over multiple sites. Such an
architecture brings users heterogeneity in computing machines as well as network
latency. In order to use such an architecture, parallel programming is required.
In the parallel computing area, in order to execute very large applications on
heterogeneous architectures, iterative methods are well adapted[1,2].

These methods repeat the same instructions block until a convergence state
and a desired approximation of the solution are reached. They constitute the
only known approach to solving some kinds of problems and are relatively easy
to parallelize. The Jacobi or the Conjugate Gradient[3] methods are examples
of such methods. To parallelize them, one of the most used methods is the
message passing paradigm which provides efficient mechanisms to exchange data
? This work was supported by the European Interreg IV From-P2P project.

between tasks. As such a method, we focus here on the asynchronous parallel
iterative model, called AIAC[1] (for Asynchronous Iterations – Asynchronous
Communications).

Time

Processor 1

Processor 2

Iter. 3 Iter. 4Iter. 1 Iter. 2 Iter. 5

Iter. 1 Iter. 3 Iter. 5 Iter. 6Iter. 2 Iter. 4

Fig. 1. Two processors computing in the Asynchronous Iterations – Asynchronous
Communications (AIAC) model

In this model, as can be seen on Figure 1, after each iteration, a task sends
its results to its neighbors and immediately starts the next iteration with the
last received data. The receiving and sending mechanisms are asynchronous and
tasks do not have to wait for the reception of dependency messages from their
neighbors. Consequently, there is no idle time between two iterations. Further-
more, this model is tolerant to messages loss and even if a task is stopped the
remaining tasks continue the computation, with the last available data. Several
experiments[2] show the relevance of the AIAC algorithms in the context of dis-
tributed clusters with high latency between clusters. These works underline the
good adaptability of AIAC algorithms to network and processor heterogeneity.

In a previous study[4] we proposed the implementation of two static map-
ping algorithms of tasks to processors dedicated to the AIAC model on hetero-
geneous distributed clusters. Both these two algorithms, AIAC-QM (for AIAC
Quick-quality Map) and F-EC (for Farhat Edges-Cuts) showed an important per-
formances improvement by significantly reducing the application execution time.
These experiments were performed by using the fully fault tolerant JaceP2P-V2
environment, described in next section. In our previous experiments we did not
introduce computing nodes failures during the computation. As architecture het-
erogeneity continually evolves according to computing nodes volatility, we have
to take care more precisely about the heterogeneity of the target platform. Thus
in this paper our main contribution is to propose a new mapping algorithm called
MAHEVE (Mapping Algorithm for HEterogeneous and Volatile Environments).
This algorithm explicitly tackles the heterogeneity issue and introduces a level of
dynamism in order to adapt itself to the fault tolerance mechanisms. Our exper-
iments show gains up to 65% on application execution time, with faults during
executions, which is about 10 points better than AIAC-QM and about 25 points
better than F-EC, and MAHEVE also outperforms them in experiments with
no fault during executions.

The rest of this paper is organized as follows. Section 2 presents the JaceP2P-
V2 middleware by describing its architecture and briefly presenting its fault toler-
ance mechanisms. Section 3 formalizes our mapping and fault tolerance problems
and quotes existing issues to address them. Section 4 describes the new map-
ping strategy we propose, MAHEVE. In Section 5 we present the experiments
we conducted on the Grid’5000 testbed with more than 400 computing cores.
Finally, we give some concluding remarks and plan our future work in Section 6.

2 JaceP2P-V2

JaceP2P-V2[5] is a distributed platform implemented in Java, dedicated to de-
veloping and executing parallel iterative asynchronous applications. It is fully
fault tolerant allowing it to execute parallel applications over volatile environ-
ments. To our knowledge this is the only platform dedicated to designing and
executing AIAC algorithms in such volatile environments.

The JaceP2P-V2 platform part, which is based on the daemons and super-
visors paradigm, is composed of three main entities:

– The “super-nodes”, which are in charge of supervising free computing nodes
connected to the platform;

– The “spawner”, which is launched by a user wanting to execute a parallel
application. It is in charge of a group of computing nodes and monitors them.
If one of them fails, it requires a replacing one to a super-node;

– The “daemon”, first connects to a super-node and waits for a task to execute.
Each daemon can communicate directly with its computing neighbors.

To be able to execute AIAC applications, JaceP2P-V2 has an asynchronous
messaging mechanism, and to resist daemons failures, it implements a check-
point/restart mechanism by using a distributed backup mechanism called the
uncoordinated distributed checkpointing[6]. This decentralized procedure allows
the platform to be very scalable, with no weak points and does not require a
secure nor a stable station for backups. When a daemon dies, it is replaced by
another one, as we suppose that there are enough available free nodes. Moreover,
to resist supervisors failures and for scalability, some extra nodes are reserved.
For more details on the JaceP2P-V2 platform, interested readers can refer to [5].

3 Mapping and fault tolerance problems

3.1 Model formalization

Application modeling The TIG[7] (Task Interaction Graph) model is the most
appropriate to our problem, as it only models relationships between tasks. In this
model, all the tasks are considered simultaneously executable and communica-
tions can take place at any time during the computation, with no precedence nor
synchronization. As a reminder, during an iteration in the AIAC model, each
task computes its job and sends its results to its neighbors, and immediately
starts the next iteration.

In the TIG model, a parallel application is represented by a graph GT (V,E),
where V = {V1, V2, . . . Vv} is the set of |V | vertices and E ⊂ V × V is the set
of undirectional edges. The vertices represent tasks and the edges represent the
mutual communication among tasks. A function EC : V → R+ gives the compu-
tation cost of tasks and CC : E → R+ gives the communication cost for message
passing on edges. We define |V | = v, EC(Vi) = ei and CC(Vi, Vj) = cij . Another
function D : V → N+ gives the amount of dependencies of a task, and we define
D(Vi) = di.

Architecture modeling A distributed clusters architecture can be modeled
by a three-level-graph. The levels are architecture (a) (here the Grid’5000 grid),
cluster (c), and computing node (n) levels. Let GG(N,L) be a graph represent-
ing a distributed clusters architecture, where N = {N1, N2, . . . Nn} is the set of
|N | vertices and L is the set of |L| undirectional edges. The vertices represent
the computing nodes and the edges represent the links between them. An edge
Li ∈ L is an unordered pair (Nx, Ny) ∈ N , representing a communication link
between nodes Nx and Ny. A function WN : N → R+ gives the computational
power of nodes and another function WL : L→ R+ gives the communication
latency of links. We define WN(Ni) = wni and WL(Li, Lj) = wlij . Let be |C|
the number of clusters contained in the architecture. A function CN : C → N+

gives the amount of computing nodes contained in a cluster, and another func-
tion CF : C → N+ gives the amount of available computing nodes (not involved
in computation) of a cluster. We define CN(Ci) = CNi and CF (Ci) = CFi. We
also define CPfi as the average power of available resources of cluster Ci.

We evaluate the heterogeneity degree of the architecture, noted hd, by using
the relative standard deviation method, with hd = σP N

avgP N
where avgPN is the

average computing power of nodes and σPN represents the standard deviation of
computing nodes power. This measure provides us the coefficient of variation of
the platform in percentage – we only consider 0 ≤ hd ≤ 1 as considering values
of hd > 1 is not relevant, as hd = 1 denotes a fully heterogeneous platform.

Mapping functions When a parallel application App, represented by a graph
GT , is mapped on a distributed clusters architecture, represented by a graph
GG, the execution time of the application, ET (App), can be defined as the
execution time of the slowest task. Indeed, an application ends when all the
tasks have detected convergence and reached the desired approximation of the
solution. We define ET (App) = maxi=1...v(ET (Vi)), where the execution time
of each task i (i = 1 . . . v), ET (Vi), is given by ET (Vi) = ei

wni
+

∑
j∈J cij ×wlij

where ei is the computational cost of Vi, wni is the computational power of
the node Ni on which Vi is mapped, J represents the neighbors set of Vi, cij is
the amount of communications between Vi and Vj , and wlij is the link latency
between the computing nodes on which Vi and Vj are mapped. As described in
this formula, the execution time of a task depends on the task weight and on
the communications which may occur between this task and its neighbors. We
underline here that in the AIAC model, it is impossible to predict the number
of iterations of a task. So it is difficult to evaluate a priori its cost ei.

This tasks mapping problem is similar to the classical graph partitioning and
task assignment problem, and is thus NP-complete.

3.2 Fault tolerance

In volatile environments, computing nodes can disconnect at any time during
the computation, and have thus to be efficiently replaced. The replacing nodes
should be the best ones at the fault time, by searching them in available nodes. As

executing environments can regularly evolve, due to computing nodes volatility,
a mapping algorithm has to keep a correct overview of the architecture, in real
time. Thus, criteria to assign tasks to nodes should evolve too.

Another problem appears after multiple crashes: some tasks may have mi-
grated over multiple computing nodes and clusters, and the initial mapping may
be totally changed. So, after having suffered some nodes failures the tasks map-
ping could not always satisfy the mapping criteria (not on the more powerful
available machine, too far away from its neighbors. . .). A good fault tolerance
policy has to evolve dynamically with the executing environment.

3.3 Specificities of the AIAC mapping problem

An important point to take into consideration is that we do not allow the ex-
ecution of multiple tasks on the same computing node, as this provides a fall
of performances when this one fails. Indeed we should redeploy all of the tasks
from this node to another one, using last saves, which can be spread on multiple
computing nodes. This may result in large communication overheads and in a
waste of computation time. Nevertheless, to benefit from multi-cores processors,
we use a task level parallelism by multi-threaded sequential solvers for example.

Another important point in the AIAC model is that as the JaceP2P-V2
environment is fault tolerant and tasks save checkpoints on their neighbors, it
is more efficient to save on near nodes than on far ones in order to reduce the
communication overhead during this operation, and to restart a task faster.

3.4 Related work

In the literature of the TIG mapping many algorithms exist, which can be
broadly classified into two categories. The first one is the Edge-cuts optimization
class, which minimizes the use of the penalizing links between clusters. As tasks
are depending on neighbors, which are called dependencies, the goal is to choose
nodes where distance, in term of network, is small to improve communications
between tasks. Here we can cite the Farhat’s algorithm[8], and Metis[9] and
Chaco[10] which are libraries containing such kind of algorithms. The second
category is the Execution time optimization class, which aims at minimizing the
whole application execution time. These algorithms look for nodes which can
provide the smallest execution time of tasks using their computational power.
Here we can cite QM[11], FastMap[12], and MiniMax[13] as such kind of algo-
rithms.

Both classes of algorithms may fit with our goals as in our model we have
both the computational power of nodes and communication costs which may
influence the applications performances.

All mentioned algorithms do not tackle the computing nodes failures issue, or
only basically by applying the same policy. As explained in Section 3.2, a more
efficient and dedicated replacement function is needed. Nevertheless, to the best
of our knowledge, no tasks mapping algorithm, addressing explicitly both the
executing platform heterogeneity and the computing nodes failures issues, exists.

4 MAHEVE

Here we present our new tasks mapping strategy, called MAHEVE (for Mapping
Algorithm for HEterogeneous and Volatile Environments). This algorithm aims
at taking the best part of each category mentioned in Section 3.4, the edge-cuts
minimization and the application execution time optimization algorithms.

This new algorithm can be divided into two parts. The first part aims at per-
forming the initial mapping, and the second part is devoted to search replacing
nodes when computing nodes failures occur.

4.1 Initial mapping

In this section we will study the main mechanisms of the static mapping done by
MAHEVE, which is composed of three phases: sort of clusters, sort of tasks, and
the effective mapping, which maps tasks (in their sort order) on nodes of clusters
(also in their sort order) with a reservation of some nodes in each cluster.

Sorting clusters The first step of the initial mapping is to sort clusters ac-
cording to the executing platform heterogeneity degree hd. The main princi-
ples are that a cluster obtains a better mark when hd < 0.5 and it contains
more computing nodes than other clusters (CFi, the number of available free
nodes, is privileged), and when hd ≥ 0.5 and it contains more powerful com-
puting nodes (CPfi, the average free computation power, is privileged). These
choices come from several experiments with the AIAC model, which show that
in such environments it is more efficient to privilege the computation power or
the number of nodes. As the number of nodes, CFi, and the average free com-
puting power, CPfi, are not in the same order of magnitude, we normalize them
with two functions, normN and normP . We note normN (CFi) = NCFi and
normP (CPfi) = NCPfi.

The formula used to give a mark, Mi, to a cluster is

Mi = NCPfi
hd +NCFi

1−hd. (1)

This compromise function allows us to privilege clusters following our criteria,
as explained previously, according to the heterogeneity degree. If we study its
limits for the hd’s extremities, hd = 0 and hd = 1, we obtain limhd→0 Mi =
NCFi + 1 and limhd→1 Mi = NCPfi + 1, which fit with our objectives.

Clusters are so sorted and placed in a list containing them, starting from the
cluster which receives the better mark to the one which receives the lower mark.

Sorting tasks Like clusters, tasks are also sorted according to the heterogene-
ity degree of the executing platform. This sorting is done in the same way as
previously, as when hd < 0.5 tasks with higher dependencies will be privileged,
and when hd ≥ 0.5 tasks with higher computing cost are privileged.

The main function used to classified tasks is

Qi = ei
hd × di1−hd (2)

where Qi is the evaluation of the task i according to the heterogeneity degree
hd and di, the amount of dependencies of task i.

Tasks are taken in the order of the first sort, determined with equation (2),
and each task is placed in a new list (the final one) and some of its dependencies
are added. We note Nbi = di

1−hd this amount of dependencies as the lower
the heterogeneity degree is the higher this number will be. This final operation
allows to control the necessary locality of tasks according to hd.

Mapping method The third step of the initial mapping is to allocate tasks
to nodes. As clusters and tasks have been sorted accordingly to the executing
platform heterogeneity degree, ordered from the highest mark to the lowest, this
function maps tasks on almost all available computing nodes of clusters, in their
respective order in lists (for example a task classified first in the tasks list is
mapped on an available node of the cluster classified first in the clusters list).
The idea here is not to fulfill each cluster, but to preserve some computing nodes
in each cluster. These conserved nodes will be used to replace failed nodes.

Here we can mentioned that the whole mapping process (the three steps) has
a complexity of O(|V |log(|V |)), where |V| is the number of tasks.

4.2 Replacing function

As shown in the previous section, during the initial mapping some computing
nodes in each cluster have been preserved. When a node fails this function replace
it by a free node of the same cluster. If none is available this function sorts again
clusters, to take into consideration platform modifications, and replace the failed
node by one available in the new sorted clusters list. This mechanism allows to
keep tasks locality and a real time overview of the executing platform.

5 Experimentation

5.1 A typical AIAC application and the execution platform

We used the “Kernel CG” application of the NAS Parallel Benchmarks (NPB)
[14] to evaluate the performances of our new mapping algorithm. This bench-
mark is designed to be used on large architectures, as it stresses communica-
tions, by processing unstructured matrix vector multiplication with a Conjugate
Gradient method. As this method cannot be executed with the asynchronous
iteration model we have replaced it by another method called the multisplitting
method, which supports the asynchronous iterative model. More details about
this method can be found in [1]. The chosen problem used a matrix of size
5, 000, 000 with a low bandwidth, fixed to 35, 000. This bandwidth size gener-
ates, according to the problem size, between 8 and 20 neighbors per tasks. This
application was executed on 64 nodes.

The platform used for our tests, called Grid’5000[15], is a French nationwide
experimental set of clusters which provides us with distributed clusters architec-
tures (28 heterogeneous clusters spread over 9 sites). We used three distributed

clusters architectures, each having a different heterogeneity degree. The first one
was composed of four clusters spread over four sites, with a total of 106 comput-
ing nodes representing 424 computing cores with hd = 0.08; the second one was
composed of four clusters spread over three sites, with a total of 110 computing
nodes representing 440 computing cores with hd = 0.50; and finally the third one
was composed of five clusters spread over four sites with 115 computing nodes
representing 620 computing cores with hd = 0.72.

All computing nodes of these clusters have at least 4 computing cores (in the
last used architecture, with hd = 0.72, two clusters are composed of 8 computing
cores machines) with a minimum of 4GB of memory (in order to execute the
application with a big problem size). All computing nodes can communicate with
each other through an efficient network. Nevertheless, this latter is shared with
many other users so high latencies appear during executions.

5.2 Experiments

During executions, we introduced two failures in computing nodes involved in the
computation every 20 seconds to simulate a volatile environment. Unfortunately,
we did not have the opportunity to realize experiments with more computing
nodes over more sites with problems of larger sizes, but we plan to extend our
experiments in the future.

Here we present the results of the evaluation of the MAHEVE algorithm,
compared with FT-AIAC-QM (for Fault Tolerant AIAC-QM) and FT-FEC (for
Fault Tolerant F-EC) which are respectively the fault tolerant versions of the
AIAC-QM and F-EC mapping algorithms presented in [4]. Table 1 shows the
execution times of each mapping algorithm compared to the default mapping
strategy of the JaceP2P-V2 platform, with the corresponding gains on appli-
cation execution time, given in brackets. It presents both the executions with
faults (WF) and the fault free (FF) executions.

hd
Default FT-AIAC-QM FT-FEC MAHEVE

FF WF FF WF FF WF FF WF

0.08 80 229 63 (21%) 178 (22%) 61 (23%) 154 (33%) 60 (25%) 113 (50%)

0.50 67 242 61 (9%) 118 (51%) 63 (6%) 133 (45%) 54 (20%) 85 (65%)

0.72 67 192 59 (12%) 99 (45%) 65 (3%) 121 (33%) 52 (22%) 86 (53%)

Table 1. Application execution time in seconds and corresponding gains on various
platforms using different mapping algorithms, with fault free (FF) executions and with
2 node failures each 20 seconds (WF) executions.

First of all, we can note that all mapping algorithms provide an enhancement
of the application performances by considerably reducing its execution time, es-
pecially for executions with node failures, with an average gain of about 45% in
general in comparison to the default policy. If we focus on executions with node

failures (WF), FT-FEC is efficient on architectures with a low heterogeneity de-
gree (hd = 0.08) by providing gains of about 33%, and gains are roughly the same
on heterogeneous architectures (hd = 0.72). FT-AIAC-QM is efficient on archi-
tectures with a high heterogeneity degree (hd = 0.72) by providing gains of about
45%, whereas it is not so efficient on homogeneous architectures (hd = 0.08) by
providing gains of about 22%. We can note here that on an architecture with
a heterogeneity degree of 0.50 FT-AIAC-QM is more efficient than FT-FEC by
providing gains up to 50%. Here we point out that in fault free executions (FF),
both algorithms also provide gains on their respective favorite architectures,
though gains are less great than in executions with faults (WF).

Now if we focus on the performances of our new solution MAHEVE, we
can see that it is all the time better than other algorithms. As can be seen in
Table 1, in executions with faults (WF), it reduces the application’s execution
time by about 50% on homogeneous architectures (here of 0.08 heterogeneity
degree) which is more than 25 point better than FT-FEC and near 30 points
better than FT-AIAC-QM. On heterogeneous architectures (here of 0.72 hetero-
geneity degree) it also outperforms other mapping algorithms by reducing the
application execution time by about 53% which is almost 10 points better than
FT-AIAC-QM and 20 points better than FT-FEC. On middle heterogeneity de-
gree architectures (here of 0.50 heterogeneity degree), MAHEVE is once again
better than its two comparative mapping algorithms by reducing the application
execution time by about 53%. These good performances come from the fact that
it is designed to be efficient on both architectures, homogeneous and heteroge-
neous. Moreover, as it integrates a fault tolerance security in the initial mapping,
it is more efficient when computing nodes fail. Here we can point out that this
algorithm allows in general gains on application execution time of about 55%. In
fault free executions (FF), it outperforms once again the two other algorithms.

6 Conclusion and future works

In this paper we have presented a new mapping algorithm, called MAHEVE, to
address the AIAC mapping issue on heterogeneous and volatile environments. It
aims at doing an efficient mapping of tasks on distributed clusters architectures
by taking the best part of the two known approaches, application execution time
optimization and edge-cuts minimization. Experiments, though using a single
application, show that it is the most efficient mapping algorithm on all kinds of
architectures, as it takes into account their heterogeneity degree and adapt its
sort methods to it. We have shown that it is all the time better than the two
other comparative mapping algorithms, FT-AIAC-QM and FT-FEC. This can
be explained by the fact that it not only takes care about computing nodes and
clusters, but also about the tasks’ properties, what refines the mapping solution.

In our future works we plan to enhance the MAHEVE algorithm perfor-
mances by modifying the notation of clusters, since their locality has not yet
been taken into consideration. This would favor tasks locality, which would re-
duce communications delays and provide a much better convergence rate. We
also have to validate the algorithm performance with other AIAC applications.

Acknowledgement

Experiments presented in this paper were carried out using the Grid’5000 exper-
imental testbed[15], being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several Universities as well as
other funding bodies.

References

1. J. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel Iterative Algorithms: from
Sequential to Grid Computing, volume 1 of Numerical Analysis & Scientific Com-
putating, chapter Asynchronous Iterations. Chapman & Hall/CRC, 2007.

2. J. Bahi, S. Contassot-Vivier, and R. Couturier. Performance comparison of par-
allel programming environments for implementing AIAC algorithms. Journal of
Supercomputing, 35(3):227–244, 2006.

3. J. K. Reid. On the method of conjugate gradients for the solution of large sparse
systems of linear equations, pages 231–254. Academic Press Inc, March 1971.

4. R. Couturier, D. Laiymani, and S. Miquée. Mapping asynchronous iterative ap-
plications on heterogeneous distributed architectures. In PDSEC, Atlanta, USA,
2010. IEEE Computer Society Press.

5. J.-C. Charr, R. Couturier, and D. Laiymani. Jacep2p-v2: A fully decentralized
and fault tolerant environment for executing parallel iterative asynchronous appli-
cations on volatile distributed architectures. In GPC, pages 446–458, 2009.

6. E. N. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

7. D. L. Long and L. A. Clarke. Task interaction graphs for concurrency analysis. In
ICSE, pages 44–52, 1989.

8. C. Farhat. A simple and efficient automatic fem domain decomposer. Computers
& Structures, 28(5):579 – 602, 1988.

9. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

10. B. Hendrickson and R. W. Leland. The Chaco User’s Guide. Sandia National
Laboratory, Albuquerque, 1995.

11. P. Phinjaroenphan. An Efficient, Pratical, Portable Mapping Technique on Compu-
tational Grids. PhD thesis, School of Computer Science and Information technology
Science, Engineering and Technology Portfolio, RMIT University, 2006.

12. S. Sanyal, A. Jain, S. K. Das, and Rupak Biswas. A hierarchical and distributed
approach for mapping large applications to heterogeneous grids using genetic al-
gorithms. In CLUSTER, pages 496–499, 2003.

13. S. Kumar, S. K. Das, and R. Biswas. Graph partitioning for parallel applications
in heterogeneous grid environments. In IPDPS, 2002.

14. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagun, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. venkatakr-
ishnan, and S. Weeratunga. The NAS Parallel Benchmarks. Technical Report
RNR-94-007, NASA Advanced Supercomputing (NAS) Division, March 1994.

15. Grid’5000. http://www.grid5000.fr.

