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Abstract. With the emergence of massive distributed computing re-
sources, such as grids and distributed clusters architectures, parallel pro-
gramming is used to benefit from them and execute problems of larger
sizes. The asynchronous iteration model, called AIAC, has been proven to
be an efficient solution for heterogeneous and distributed architectures.
An efficient mapping of applications’ tasks is essential to reduce their ex-
ecution time. We present in this paper a new mapping algorithm, called
MAHEVE (Mapping Algorithm for HEterogeneous and Volatile Envi-
ronments) which is efficient on such architectures and integrates a fault
tolerance mechanism to resist to computing nodes failures. Our experi-
ments show gains on a typical AIAC application’s execution time about
55%, executed on distributed clusters architectures containing more than
400 computing cores with the JaceP2P-V2 environment.

1 Introduction

Nowadays, scientific applications require a great computation power to solve
their large problems. Though personal computers are more powerful, in many
cases they are not sufficient. One well adapted solution is to use computers
clusters in order to combine the power of many machines. Distributed clusters
form such an architecture, providing a great computing power, by aggregating
the computation power of multiple clusters spread over multiple sites. Such an
architecture brings users heterogeneity in computing machines as well as network
latency. In order to use such an architecture, parallel programming is required.
In the parallel computing area, in order to execute very large applications on
heterogeneous architectures, iterative methods are well adapted[1].

These methods repeat the same instructions block until a convergence state
and a desired approximation of the solution are reached. They constitute the
only known approach to solving some kinds of problems and are relatively easy
to parallelize. The Jacobi or Conjugate Gradient[2] methods are examples of
such methods.

To parallelize this kind of algorithm, one of the most used methods is the
message passing paradigm which allows an efficient mechanism to exchange data
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between tasks. As such a method, we focus here on the asynchronous parallel
iterative model, called AIAC[1] (for Asynchronous Iteration and Asynchronous
Communication).
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Fig. 1. Two processors computing in the Asynchronous Iteration - Asynchronous Com-
munication (AIAC) model

In this model, as can be seen on Figure 1, after each iteration, a task sends
its results to its neighbors and immediately starts the next iteration with the
last received data. The receiving and sending mechanisms are asynchronous and
tasks do not have to wait for the reception of dependency messages from their
neighbors. Consequently, there is no idle time between two iterations. Further-
more, this model is tolerant to messages loss and even if a task is stopped the
remaining tasks continue the computation, with the last available data. Several
experiments[3] show the relevance of the AIAC algorithms in the context of dis-
tributed clusters with high latency between clusters. These works underline the
good adaptability of AIAC algorithms to network and processor heterogeneity.

In a previous study[4] we proposed two static mapping algorithms of tasks
to processors dedicated to the AIAC model on heterogeneous distributed clus-
ters. Both these two algorithms, AIAC-QM (for AIAC Quick-quality Map) and
F-EC (for Farhat Edges-Cuts) showed an important performances improvement
by reducing up to 50% the application’s execution time. These experiments were
performed by using the JaceP2P-V2 environment. This Java based platform is an
executing and developing environment dedicated to the AIAC model. By imple-
menting a distributed backup/restore mechanism it is also fully fault tolerant[5].
In our previous experiments we did not introduce computing nodes failures dur-
ing the computation. And as architecture’s heterogeneity continually evolves
according to computing nodes volatility, we have to more precisely takes care
about the heterogeneity of the target platform. Thus in this paper our main
contribution is to propose a new mapping algorithm called MAHEVE (Map-
ping Algorithm for HEterogeneous and Volatile Environments). This algorithm
explicitly tackles the heterogeneity issue and introduces a level of dynamism in
order to adapt itself to the fault tolerance mechanisms. Our experiments show
gains about 55% on application’s execution time, with about 10 points better
than AIAC-QM and about 25 points better than F-EC.

The rest of this paper is organized as follows. Section 2 reminds the JaceP2P-
V2 middleware by describing its architecture and briefly presenting its fault toler-
ance mechanism. Section 3 formalizes our mapping and fault tolerance problems
and quotes existing issues to address them. Section 4 describes the new mapping
strategy we propose, MAHEVE. In section 5 we present the experiments we
have conducted on the Grid’5000 testbed with more than 400 computing cores.
Finally, we give some concluding remarks and plan our future work in section 6.



2 JaceP2P-V2

JaceP2P-V2[5] is a distributed platform implemented in Java, dedicated to de-
veloping and executing parallel iterative asynchronous applications. It is fully
fault tolerant allowing it to execute parallel applications over volatile environ-
ments. To our knowledge this is the only platform dedicated to designing and
executing AIAC algorithms in such volatile environments.

The JaceP2P-V2 platform part, which is based on the daemons and super-
visors paradigm, is composed of three main entities:

– The “super-nodes”, which is in charge of supervising free computing nodes
connected to the platform.

– The “spawner”, which is launched by a user wanting to execute a parallel
application. It is in charge of a group of computing nodes and monitor them.
If one of them fails, it requires a replacing one to a super-node.

– The “daemon”, when launched, connects to a super-node and waits for a
task to execute. Each daemon can communicate directly with its computing
neighbors.

To be able to execute asynchronous iterative applications, JaceP2P-V2 has an
asynchronous messaging mechanism. In order to resist daemons’ failures, it im-
plements a distributed backup mechanism called the uncoordinated distributed
checkpointing[6]. This decentralized procedure allows the platform to be very
scalable, with no weak points and does not require a secure nor a stable station
for backups. When a daemon dies, it is replaced by another one. Here we sup-
pose that we have enough available free nodes. Moreover, to resit to supervisors
failures and to be scalable, it reserves some extra nodes. For more details on the
JaceP2P-V2 platform, interested readers can refer to [5].

3 Mapping and fault tolerance problems

3.1 Model formalization

Application modeling With the AIAC model, all tasks compute in parallel
at the same time, without precedence nor synchronization. During an iteration,
each task computes its job and sends its results to its neighbors, and imme-
diately starts the next iteration. The TIG[7] (Task Interaction Graph) is the
most appropriate model to our problem, as it only models relationships between
tasks. In this model, all the tasks are considered simultaneously executable and
communications can take place at any time during the computation, with no
precedence nor synchronization.

In the TIG model, a parallel application is represented by a graph GT (V,E),
where V = {V1, V2, . . . Vv} is the set of |V | vertices and E ⊂ V × V is the set
of undirectional edges. The vertices represent tasks and the edges represent the
mutual communication among tasks. A function EC : V → R+ gives the compu-
tation cost of tasks and CC : E → R+ gives the communication cost for message



passing on edges. We define |V | = v, EC(Vi) = ei and CC(Vi, Vj) = cij . Another
function D : V → R+ gives the amount of dependencies of a task, and we define
D(Vi) = di.

Architecture modeling A distributed clusters architecture can be modeled
by a three-level-graph. The levels are architecture (a) (here the Grid’5000 grid),
cluster (c), and computing node (n) levels. Let GG(N,L) be a graph represent-
ing a distributed clusters architecture, where N = {N1, N2, . . . Nn} is the set of
|N | vertices and L is the set of |L| undirectional edges. The vertices represent
the computing nodes and the edges represent the links between them. An edge
Li ∈ L is an unordered pair (Nx, Ny) ∈ N, representing a communication link
between nodes Nx and Ny. A function WN : N → R+ gives the computational
power of nodes and another function WL : L→ R+ gives the communication
latency of links. We define WN(Ni) = wni and WL(Li, Lj) = wlij . Let be |C|
the number of clusters contained in the architecture. A function CN : C → N+

gives the amount of computing nodes contained in a cluster, and another func-
tion CF : C → R+ gives the amount of available computing nodes (not in-
volve in an application computation) of a cluster. We define CN(Ci) = CNi
and CF (Ci) = CFi. We also define CPi =

∑CNi

j=1 wnj as the whole computation
power of cluster Ci and CPi = CP i

CNi
as the average computation power of cluster

Ci, and CPfi the average power of its available resources.
We evaluate the heterogeneity degree of the architecture, noted hd, by using

the relative standard deviation method, with hd = σP N

avgP N
where avgPN is the

average computing power of nodes and σPN represents the standard deviation of
computing nodes power. This measure provides us the coefficient of variation of
the platform in percentage – we only consider 0 ≤ hd ≤ 1 as considering values
of hd > 1 is not relevant, as hd = 1 denotes a fully heterogeneous platform.

Mapping functions When a parallel application App, represented by a graph
GT , is mapped on a distributed clusters architecture, represented by a graphGG,
the execution time of the application, ET (App), can be defined as the execution
time of the slowest task. Indeed, an application ends when all the tasks have
detected convergence and reached the desired approximation of the solution. We
define ET (App) = maxi=1...v(ET (Vi)) where the execution time of each task i
(i = 1 . . . v), ET (Vi) is given by ET (Vi) = ei

wni
+

∑
j∈J cij × wlij where ei is

the computational cost of Vi, wni is the computational power of the node Ni
on which Vi is mapped, J represents the neighbors set of Vi, cij is the amount
of communications between Vi and Vj , and wlij is the link latency between the
computing nodes on which are mapped Vi and Vj . As described in this formula,
the execution time of a task depends on the task weight and communications
it may occur with its neighbors. We underline here that in the AIAC model, it
is impossible to predict the number of iterations of a task. So it is difficult to
evaluate a priori its cost ei.

This tasks mapping problem is similar to the classical graph partitioning and
task assignment problem, and is thus NP-complete.



3.2 Fault tolerance

In volatile environments, computing nodes can disconnect at any time during
the computation, and these ones have to efficiently be replaced.

The replacing nodes should be the best ones at the fault time, according
to the chosen mapping algorithm, by searching them in available nodes. As
executing environments can regularly evolve, due to computing nodes’ volatility,
a mapping algorithm has to keep a right overview of the architecture, in real
time. Thus, criteria to assign tasks to nodes should evolve too.

Another problem appears after multiple crashes: some tasks may have mi-
grated over multiple computing nodes and clusters, and the initial mapping may
be totally changed. So, after having suffered some nodes failures the tasks map-
ping could not always satisfy the mapping criteria (not on the more powerful
available machine, too far away from its neighbors. . . ). A good fault tolerance
policy has to evolve dynamically with the executing environment.

3.3 Specificities of the AIAC mapping problem

An important point to take into consideration is that we do not allow the exe-
cution of multiple tasks on the same computing node, as this provides a fall of
performance when this one fails. Indeed we should redeploy all of the tasks from
this node to another one, using last saves, which can be spread on multiple com-
puting nodes. This may result in large communication overheads and a waste of
computation time. Nevertheless, to benefit of multi-cores processors, we use a
task level parallelism by running multi-threaded sequential solver for example.

Another important point in the AIAC model is that as the JaceP2P-V2
environment is fault tolerant and tasks save checkpoints on their neighbors, it
is more efficient to save on near nodes than on far ones in order to reduce the
communication overhead during this operation, and to faster restart a task.

3.4 Related work

In the literature of the TIG mapping many algorithms exist, which can be
broadly classified into two categories. The first one is the Edge-cuts optimiza-
tion class, which minimizes the use of the penalizing links between clusters. As
tasks are depending on neighbors, which are called dependencies, the goal is to
choose nodes where distance, in term of network, is small to improve communi-
cations between tasks. Here we can cite Metis[8] and Chaco[9] which are libraries
containing such kind of algorithms. The second category is the Execution time
optimization class, which aims to minimize the whole application’s execution
time. These algorithms look for nodes which can provide the smallest execu-
tion time of tasks using their computational power. Here we can cite QM[10],
FastMap[11], and MiniMax[12] as such kind of algorithms.

Both classes of algorithms may fit with our goals as in our model we have
both the computational power of nodes and communication costs which may
influence the applications performances.



All mentioned algorithms do not tackle the computing nodes failures issue, or
basically by applying the same policy. As explain in section 3.2, a more efficient
and dedicated replacement function is needed. Nevertheless, to the best of our
knowledge, no tasks mapping algorithm, addressing explicitly both the executing
platform heterogeneity and the computing nodes failures issues, exists.

4 MAHEVE

Here we present our new tasks mapping strategy, called MAHEVE (for Mapping
Algorithm for HEterogeneous and Volatile Environments). This algorithm aims
to take the best part of each category mentioned in section 3.4, the edge-cuts
minimization and the application’s execution time optimization algorithms.

This new algorithm can be divided into two parts. The first part aims to
perform the initial mapping, and the second part is devoted to search replacing
nodes when computing nodes’ failures occur.

4.1 Initial mapping
In this section we will study the main mechanisms of the static mapping done by
MAHEVE, which is composed of three phases: sort of clusters, sort of tasks, and
the effective mapping, which maps tasks (in their sort order) on nodes of clusters
(also in their sort order) with a reservation of some nodes in each cluster.

Sorting clusters The first step of the initial mapping is to sort clusters ac-
cordingly to the executing platform’s heterogeneity degree hd. The main prin-
ciples are that a cluster obtain a better mark when hd < 0.5 and it con-
tains more computing nodes than other clusters (CFi, the amount of avail-
able free nodes, is privileged), and when hd ≥ 0.5 and it contains more pow-
erful computing nodes (CPfi, the average computation power, is privileged).
These choices come from several experiments with the AIAC model, which
show that in such environments it is more efficient to privilege the computa-
tion power or the amount of nodes. As the amount of nodes, CFi, and the
average computing power, CPfi, are not in the order of magnitude, we nor-
malize them with two functions, normN and normP . They are defined as
normN (CFi) = CFi × 100÷

∑|C|
j=1 CFj , which is the rate (in percent) of com-

puting nodes, and normP (CPfi) = CPfi × 100÷
∑|C|
j=1 CPfj , which is the rate

(in percent) of the average power, both representing the cluster in the architec-
ture. We note NCFi = normN (CFi) and NCPfi = normP (CPfi).

The formula used to give a mark, Mi, to a cluster is

Mi = NCPfi
hd +NCFi

1−hd. (1)

This compromise function allows us to privilege clusters following our criteria,
as explained previously, according to the heterogeneity degree. If we study its
limits for the hd’s extremities, hd = 0 and hd = 1, we obtain limhd→0 Mi = NCFi
and limhd→1 Mi = NCPfi, which fit with our objectives.

Clusters are so sorted and placed in a list containing them, starting from the
cluster which receives the better mark to the one which receives the lower mark.



Sorting tasks Like clusters, tasks are also sorted accordingly to the hetero-
geneity degree of the executing platform. This sort is done in the same way as
previously, as when hd < 0.5 tasks with higher dependencies will be privileged,
and when hd ≥ 0.5 tasks with higher computing cost are privileged, in order to
be executed on highest powered computing nodes.

The main function used to classified tasks is
Qi = ehdi × d1−hd

i (2)
where Qi is the evaluation of the task i according to the heterogeneity degree

hd and di, the amount of dependencies of task i.
Tasks are taken in the order of the first sort, determined with equation (2),

and each task is placed in a new list (the final one) and some of its dependencies
are added. We note Nbi = d1−hd

i this amount of dependencies as the lower the
heterogeneity degree is the higher this number will be. This final operation allows
to control the necessary locality of tasks according to the heterogeneity degree
of the platform.

Mapping method The third step of the initial mapping is to allocate tasks
to computing nodes. As clusters and tasks have been sorted accordingly to the
executing platform’s heterogeneity degree, ordered from the highest mark to the
lower, this function maps tasks on each available computing nodes of clusters,
in their respective order in lists (for example task classified first in the tasks list
is mapped on an available node of the cluster classified first in clusters list).

The idea here is not to fulfill each cluster, but preserve some computing nodes
in each cluster. These conserved nodes will be used to replace failed nodes. The
fact of considering in the initial mapping the fault tolerance is a new approach
in mapping algorithms.

4.2 Replacing function
This function is essential in a volatile environment, as an efficient replacement
should reduce the overhead on the application execution time due to the loss of
computing steps and data.

As we have shown in the previous section, during the initial mapping some
computing nodes in each cluster have been preserved for fault tolerance. When
a node fails this function replace it by a free node of the same cluster. If none is
available this function sorts again clusters, to take into consideration platform’s
modifications, and replace the failed node by one available in the new sorted clus-
ters list. This mechanism allows to keep tasks’ locality and a real time overview
of the executing platform.

5 Experimentation
5.1 A typical AIAC application and the execution platform
We used the “Kernel CG” application of the NAS Parallel Benchmarks (NPB)
[13] to evaluate the performances of our new mapping algorithm. This benchmark



is designed to be used on large architectures, because it stresses communications
over latency networks, by processing unstructured matrix vector multiplication
with a Conjugate Gradient method. As this method cannot be executed with the
asynchronous iteration model we have replaced it by another method called the
multisplitting method. This latter supports the asynchronous iterative model.
For more details about this method, interested readers are invited to see [1]. The
chosen problem used a matrix of size 5, 000, 000 with a low bandwidth, fixed to
35, 000. This bandwidth size generates, according to the problem’s size, between
8 and 20 neighbors per tasks. This application was executed on 64 computing
nodes.

The platform used for our tests, called Grid’5000[14], is a French nationwide
experimental set of clusters which provides us distributed clusters architectures
(28 heterogeneous clusters spread over 9 sites). We used three distributed clusters
architectures on the Grid’5000 testbed, each having a different heterogeneity
degree. The first one was composed of four clusters spread over four sites, with a
total of 106 computing nodes representing 424 computing cores with hd = 0.08;
the second one was composed of four clusters spread over three sites, with a total
of 110 computing nodes representing 440 computing cores with hd = 0.50; and
finally the third one was composed of five clusters spread over four sites with
115 computing nodes representing 620 computing cores with hd = 0.72.

All computing nodes of these clusters have at least 4 computing cores (in the
last used architecture, with hd = 0.72, two clusters are composed of 8 computing
cores machines) with a minimum of 4GB of memory (in order to execute the
application with a big problem’s size). All computing nodes can communicate
with each other through an efficient network. Nevertheless, this latter is shared
with many other users so high latencies appear during executions.

5.2 Experiments

During executions, we introduced two failures in computing nodes involved in
the computation every 20 seconds to simulate a volatile environment. Unfortu-
nately, we had not the opportunity to realize experiments with more computing
nodes over more sites with problems of larger sizes, but we plan to extend our
experiments in the future.

Here we present the results of the evaluation of the MAHEVE algorithm,
compared with FT-AIAC-QM (for Fault Tolerant AIAC-QM ) and FT-FEC (for
Fault Tolerant F-EC ) which are respectively the fault tolerant versions of the
AIAC-QM and F-EC mapping algorithms presented in [4]. Table 1 shows the
execution times of each mapping algorithm compared to the default mapping
strategy of the JaceP2P-V2 platform, with the corresponding gains on applica-
tion’s execution time, in brackets.

First of all, we can note that all mapping algorithms provide an enhancement
of the application’s performances by considerably reducing its execution time,
with an average gain about 45% in general in comparison to the default policy.
As shown in [4], FT-FEC is efficient on architectures with a low heterogeneity
degree (hd = 0.08 by providing gains about 33%, and gains are seemly the same



hd Default FT-AIAC-QM FT-FEC MAHEVE

0.08 229s 178s (22%) 154s (33%) 113s (50%)

0.50 242s 118s (51%) 133s (45%) 85s (65%)

0.72 192s 99s (45%) 121s (33%) 86s (53%)

Table 1. Application’s execution time in seconds and corresponding gains on various
platforms using different mapping algorithms with 2 computing nodes’ failures each 20
seconds

on heterogeneous architectures (hd = 0.72). FT-AIAC-QM is efficient on archi-
tectures with a high heterogeneity degree (hd = 0.72) by providing gains about
45%, whereas it is not so efficient on homogeneous architectures (hd = 0.08) by
providing gains about 22%. We can note here that on an architecture with a
heterogeneity degree of 0.50 FT-AIAC-QM is more efficient than FT-FEC by
providing gains up to 50%.

Now if we look at the performances of our new solution, MAHEVE, we can
see that it is all the time better than other algorithms. As can be seen in Table 1,
it reduces the application’s execution time by about 50% on homogeneous archi-
tectures (here of 0.08 heterogeneity degree) what is more than 25 point better
than FT-FEC and near 30 points better than FT-AIAC-QM. On heterogeneous
architectures (here of 0.72 heterogeneity degree) it also outperforms other map-
ping algorithms by reducing the application’s execution time by about 53% what
is near about 10 points better than FT-AIAC-QM and 20 points better than FT-
FEC. On middle heterogeneity degree architectures (here of 0.50 heterogeneity
degree), MAHEVE is another one time better than its two comparative mapping
algorithms by reducing the application’s execution time by about 53%. These
good performances come from the fact that it is designed to be efficient on
both architectures, homogeneous and heterogeneous. Moreover, as it integrates
a fault tolerance security in the initial mapping, it is more efficient when com-
puting nodes fail. Here we can point out that this algorithm allows in general
gains on application’s execution time about 55%.

6 Conclusion and future works

In this paper we have presented a novel mapping algorithm, called MAHEVE, to
address the AIAC mapping issue on heterogeneous and volatile environments. It
aims to do an efficient mapping of tasks on distributed clusters architectures by
taking the best part of the two known approaches, application’s execution time
optimization and edge-cuts minimization. Experiments show that it is the most
efficient mapping algorithm on all kinds of architectures, as it takes care about
their heterogeneity degree and adapt its sort methods to it. We have shown that
it is all the time better than the two other comparative mapping algorithms, FT-
AIAC-QM and FT-FEC. This can be explained by the fact that it not only takes



care about computing nodes and clusters, but also about the tasks’ properties,
what refines the mapping solution.

In our future works we plan to enhance the MAHEVE algorithm perfor-
mances by modifying the notation of clusters as their locality is now not taken
into consideration, in order to favor tasks locality, which will reduce communi-
cations delays providing a better convergence rate.
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