
1 Root finding problem

We consider a polynomial of degree n having coefficients in the complex C
and zeros αi, i=1,...,n.

p(x) =
∑

aix
i = an

∏
(x− αi), a0an 6= 0 (1)

the root finding problem consist to find all n root of p(x). the problem
of finding a root is equivalent to the problem of finding a fixed-point. To see
this consider the fixed-point problem of finding the n-dimensional vector x
such that

x = g(x).

where g : Cn −→ Cn. Note that we can easily rewrite this fixed-point
problem as a root-finding problem by setting f(x) = x − g(x) and likewise
we can recast the root-finding problem into a fixed-point problem by setting

g(x) = f(x)− x

Often it will not be possible to solve such nonlinear equation root-finding
problems analytically. When this occurs we turn to numerical methods to
approximate the solution. Generally speaking, algorithms for solving prob-
lems numerically can be divided into two main groups: direct methods and
iterative methods.
Direct methods exist only for n 6 4,solved in closed form by G. Cardano in
the mid-16th century. However, N.H. Abel in the early 19th century showed
that polynomials of degree five or more could not be solved by directs meth-
ods. Since then researchers have concentrated on numerical (iterative) meth-
ods such as the famous Newton s method, Bernoulli s method of the 18th,
and Graeffe s. With the advent of electronic computers, different methods
has been developed such as the Jenkins-Traub method, Larkin s method,
Muller s method, and several methods for simultaneous approximation of
all the roots, starting with the Durand-Kerner method:

Zi = Zi −
P (Zi)∏

i 6=j(zi − zj)
(2)

This formula is mentioned for the first time from Weiestrass [15] as
part of the fundamental theorem of Algebra and is rediscovered from Ili-
eff [17], Docev [13], Durand [7], Kerner [12]. Another method discovered
from Borsch-Supan [29] and also described and brought in the following
form from Ehrlich [30] and Aberth [2].

1

Zi = Zi −
1

P ′(Zi)
P (Zi)

−
∑

i 6=j(zi − zj)
(3)

Aberth, Ehrlich and Farmer-Loizou [9] have proved that the above method
has cubic order of convergence for simple roots.

Iterative methods raise several problem when implemented e.g. specific
sizes of numbers must be used to deal with this difficulty.Moreover,the con-
vergence time of iterative methods drastically increase like the degrees of
high polynomials. The parallelization of these algorithms will improve the
convergence time.

Many authors have treated the problem of parallelization of simultane-
ous methods. Freeman [26] has tested the DK method, EA method and
another method of the fourth order proposed from Farmer and Loizou [9],on
a 8- processor linear chain, for polynomial of degree up to 8. The third
method often diverges, but the first two methods have speed-up 5.5 (speed-
up=(Time on one processor)/(Time on p processors)). Later Freeman and
Bane [27] consider asynchronous algorithms, in which each processor con-
tinues to update its approximations even although the latest values of other
zi((k)) have not received from the other processors, in difference with the
synchronous version where it would wait. in [4]proposed two methods of
parallelization for architecture with shared memory and distributed mem-
ory,it able to compute the root of polynomial degree 10000 on 430 s with
only 8 pc and 2 communications per iteration. Compare to the sequential
it take 3300 s to obtain the same results.

After this few works discuses this problem until the apparition of the
Compute Unified Device Architecture (CUDA) [1],a parallel computing plat-
form and a programming model invented by NVIDIA. the computing ability
of GPU has exceeded the counterpart of CPU. It is a waste of resource to
be just a graphics card for GPU. CUDA adopts a totally new computing
architecture to use the hardware resources provided by GPU in order to
offer a stronger computing ability to the massive data computing.

Indeed, [8]proposed the implementation of the Durand-Kerner method
on GPU (Graphics Processing Unit). The main result prove that a parallel
implementation is 10 times as fast as the sequential implementation on a
single CPU for high degree polynomials that is greater than about 48000.

The mean part of our work is to implement the Aberth method on GPU
and compare it with the Durand Kerner implementation.................To be
continued..................

2

2 Aberth method and difficulties

A cubically convergent iteration method for finding zeros of polynomials
was proposed by O.Aberth [2].The Aberth method is a purely algebraic
derivation.To illustrate the derivation, we let wi(z) be the product of linear
factor wi(z) =

∏n
j=1,j 6=i(z − xj)

and rational functionRi(z) be the correction term of Weistrass method [15]:

Ri(z) =
p(z)

wi(Z)
, i = 1, 2, ..., n. (4)

Differentiating the rational function Ri(z) and applying the Newton
method, we have

Ri(z)

R
′
i(z)

=
p(z)

p′(z)− p(z)wi(z)
w
′
i(z)

=
p(z)

p′(z)− p(z)
∑n

j=1,j 6=i
1

z − xi

, i = 1, 2, ..., n

(5)
Substituting xj for z we obtain the Aberth iteration method
Let present the means stages of Aberth’s method.

2.1 Polynomials Initialization

The initialization of polynomial P(z) with complex coefficients are given by:

p(z) =
∑

aiz
n−i.wherean 6= 0, a0 = 1, ai ⊂ C (6)

2.2 Vector Z0) Initialization

The choice of the initial points z
(0)
i , i = 1, ..., n, from which starting the

iteration (2) or (3), is rather delicate since the number of steps needed by
the iterative method to reach a given approximation strongly depends on
it. In [2]the Aberth iteration is started by selecting n equispaced points on
a circle of center 0 and radius r, where r is an upper bound to the moduli
of the zeros. After, [5] performs this choice by selecting complex numbers
along different circles and relies on the result of [3].

σ0 =
u+ v

2
;u =

∑n
i=1 ui

n.maxni=1ui
; v =

∑n−1
i=0 vi

n.minn−1i=0 vi
;ui = 2.|ai|

1
i ; vi =

|anai |
1

n−i

2
(7)

3

2.3 Iterative Function Hi

The operator used with Aberth’s method is corresponding to the following
equation which will enable the convergence towards polynomial solutions,
provided all the roots are distinct.

Hi(z) = zi −
1

P ′ (zi)
P (zi)

−
∑

j 6=i
1

zi−zj

(8)

2.4 Convergence condition

determines the success of the termination. It consists in stopping the itera-
tive function Hi(z) when the are stable,the method converge sufficiently:

∀i ∈ [1, n];
z
(k)
i − z

(k−1)
i

z
(k)
i

< ξ (9)

3 Difficulties and amelioration

the Aberth method implementation suffer of overflow problems. This situ-
ation occurs, for instance, in the case where a polynomial having positive
coefficients and large degree is computed at a point ξ where |ξ| > 1.Indeed
the limited number in the mantissa of floating takings the computation of
P(z) wrong when z is large. for example (1050)+1+(−1050) will give result 0
instead of 1 in reality.consequently we can’t compute the roots for large poly-
nomial’s degree. This problem was discuss in [14] for the Durand-Kerner
method, the authors propose to use the logratihm and the exponential of a
complex:

∀(x, y) ∈ R∗2; ln(x+ i.y) = ln(x2 + y2)2 + i. arcsin(y
√
x2 + y2)]−π,π[(10)

∀(x, y) ∈ R∗2; exp(x+ i.y) = exp(x). exp(i.y) (11)

= exp(x). cos(y) + i. exp(x). sin(y) (12)

The application of logarithm can replace any multiplications and divi-
sions with additions and subtractions; consequently it manipulates lower
absolute values and can be compute the roots for large polynomial’s degree
exceed [14].

Applying this solution for the Aberth method we obtain the iteration
function with logarithm:

Hi(z) = zki − exp
(

ln (p(zk))− ln
(
p(z

′
k)
)
− ln (1−Q(zk))

)
(13)

4

where:

Q(zk) = exp

ln(p(zk))− ln(p(z
′
k)) + ln

 n∑
k 6=j

1

zk − zj

 (14)

this solution is applying when it is necessary

4 The implementation of simultaneous methods in
a parallel computer

The main problem of the simultaneous methods is that the necessary time
needed for the convergence is increased with the increasing of the degree
of the polynomial. The parallelization of these algorithms will improve
the convergence time. Researchers usually adopt one of the two follow-
ing approaches to parallelize root finding algorithms. One approach is to
reduce the total number of iterations as implemented by Miranker [31, 32],
Schedler [10] and Winogard [24]. Another approach is to reduce the com-
putation time per iteration, as reported in [18, 22, 23, 25]. There are many
schemes for simultaneous approximations of all roots of a given polynomial.
Several works on different methods and issues of root finding have been re-
ported in [11, 16, ?, 28, 34, 33]. However, Durand-Kerner and Ehrlich meth-
ods are the most practical choices among them [6]. These two methods have
been extensively studied for parallelization due to their following advantages.
The computation involved in these methods has some inherent parallelism
that can be suitably exploited by SIMD machines. Moreover, they have fast
rate of convergence (quadratic for the Durand-Kerner method and cubic for
the Ehrlich). Various parallel algorithms reported for these methods can
be found in [19, 26, 27, ?, 21, 23]. Freeman and Bane [27] presented two
parallel algorithms on a local memory MIMD computer with the compute-
to communication time ratio O(n). However, their algorithms require each
processor to communicate its current approximation to all other processors
at the end of each iteration. Therefore they cause a high degree of memory
conflict. Recently the author in [32] proposed two versions of parallel algo-
rithm for the Durand-Kerner method, and Aberth method on an on model
of Optoelectronic Transpose Interconnection System (OTIS).The algorithms
are mapped on an OTIS-2D torus using N processors. This solution need
N processors to compute N roots, that it is not practical (is not suitable
to compute large polynomial’s degrees). Until then, the related works are
not able to compute the root of the large polynomial’s degrees (higher then
1000) and with small time.

Finding polynomial roots rapidly and accurately it is our objective, with
the apparition of the CUDA(Compute Unified Device Architecture), finding
the roots of polynomials becomes rewarding and very interesting, CUDA

5

adopts a totally new computing architecture to use the hardware resources
provided by GPU in order to offer a stronger computing ability to the mas-
sive data computing.in [8] we proposed the first implantation of the root
finding polynomials method on GPU (Graphics Processing Unit),which is
the Durand-Kerner method. The main result prove that a parallel imple-
mentation is 10 times as fast as the sequential implementation on a single
CPU for high degree polynomials that is greater than about 48000. Indeed,
in this paper we present a parallel implementation of Aberth’s method on
GPU, more details are discussed in the following of this paper.

5 A parallel implementation of Aberth’s method

5.1 Background on the GPU architecture

A GPU is viewed as an accelerator for the data-parallel and intensive arith-
metic computations. It draws its computing power from the parallel nature
of its hardware and software architectures. A GPU is composed of hundreds
of Streaming Processors (SPs) organized in several blocks called Streaming
Multiprocessors (SMs). It also has a memory hierarchy. It has a private
read-write local memory per SP, fast shared memory and read-only con-
stant and texture caches per SM and a read-write global memory shared by
all its SPs [20]

On a CPU equipped with a GPU, all the data-parallel and intensive
functions of an application running on the CPU are off-loaded onto the GPU
in order to accelerate their computations. A similar data-parallel function
is executed on a GPU as a kernel by thousands or even millions of parallel
threads, grouped together as a grid of thread blocks. Therefore, each SM
of the GPU executes one or more thread blocks in SIMD fashion (Single
Instruction, Multiple Data) and in turn each SP of a GPU SM runs one or
more threads within a block in SIMT fashion (Single Instruction, Multiple
threads). Indeed at any given clock cycle, the threads execute the same
instruction of a kernel, but each of them operates on different data. GPUs
only work on data filled in their global memories and the final results of
their kernel executions must be communicated to their CPUs. Hence, the
data must be transferred in and out of the GPU. However, the speed of
memory copy between the GPU and the CPU is slower than the memory
bandwidths of the GPU memories and, thus, it dramatically affects the
performances of GPU computations. Accordingly, it is necessary to limit
data transfers between the GPU and its CPU during the computations.

5.2 Background on the CUDA Programming Model

The CUDA programming model is similar in style to a single program
multiple-data (SPMD) softwaremodel. The GPU is treated as a coproces-

6

sor that executes data-parallel kernel functions. CUDA provides three key
abstractions, a hierarchy of thread groups, shared memories, and barrier
synchronization. Threads have a three level hierarchy. A grid is a set of
thread blocks that execute a kernel function. Each grid consists of blocks
of threads. Each block is composed of hundreds of threads. Threads within
one block can share data using shared memory and can be synchronized at
a barrier. All threads within a block are executed concurrently on a multi-
threaded architecture.The programmer specifies the number of threads per
block, and the number of blocks per grid. A thread in the CUDA program-
ming language is much lighter weight than a thread in traditional operating
systems. A thread in CUDA typically processes one data element at a time.
The CUDA programming model has two shared read-write memory spaces,
the shared memory space and the global memory space. The shared memory
is local to a block and the global memory space is accessible by all blocks.
CUDA also provides two read-only memory spaces, the constant space and
the texture space, which reside in external DRAM, and are accessed via
read-only caches

5.3 A parallel implementation of the Aberth’s method

5.3.1 A sequential Aberth algorithm

The means steps of Aberth’s method can expressed as an algorithm like:

Algorithm 1: Algorithm to find root polynomial with Aberth method

Input: Z0(Initial root’s vector),ε (error tolerance
threshold),P(Polynomial to solve)

Output: Z(The solution root’s vector)

1 Initialization of the parameter of the polynomial to solve;
2 Initialization of the solution vector Z0;
3 while ∆zmax � ε do
4 Let ∆zmax = 0;
5 for j ← 0 to n do
6 ZPrec [j] = Z [j];
7 Z [j] = H (j, Z);

8 for i← 0 to n− 1 do

9 c = |Z[i]−ZPrec[i]|
Z[i] ;

10 if c � ∆zmax then
11 ∆zmax=c;

In this sequential algorithm one thread CPU execute all steps, let see the
step 3 the execution of the iterative function , 2 instructions are needed,

7

the first instruction save the solution vector for the previous iteration, the
second instruction update or compute a new values of the roots. We have
two manner to execute the iterative function, taking a Jacobi iteration who

need all the previous value z
(k)
i to compute the new value z

(k+1)
i we have:

H(i, zk+1) =
p(z

(k)
i)

p′(z
(k)
i)− p(z(k)i)

∑n
j=1j 6=i

1

z
(k)
i −z

(k)
j

, i = 1, ..., n. (15)

Or with the Gauss-seidel iteration, we have:

H(i, zk+1) =
p(z

(k)
i)

p′(z
(k)
i)− p(z(k)i)

∑i−1
j=1

1

z
(k)
i −z

(k)
j

+
∑n

j=i+1
1

z
(k)
i −z

(k)
j

, i = 1, ..., n.

(16)
In formula(16) the iteration function use the zk+1

i computed in the cur-
rent iteration to compute the rest of the roots, which take him to converge
more quickly compare to the jacobi iteration (it’s well now that the Gauss-
seidel iteration converge more quickly because they used the most fresh
computed root, so we used Gauss-seidel iteration.)

The steps 4 of the Aberth’s method compute the convergence of the
roots, using(9) formula. Both steps 3 and 4 use 1 thread to compute N
roots on CPU, which is faster and hard, it make the algorithm faster and
hard for the large polynomial’s roots finding.

The execution time Let Ti(N): the time to compute one new root’s
value of the step 3,Ti depend on the polynomial’s degrees N, when N increase
Ti increase to.We need N.Ti(N) to compute all the new root’s value in one
iteration on the step 3.

Let Tj : the time to compute one root’s convergence value of the step 4,
we need N.Tj to compute all the root’s convergence value in one iteration
on the step 4.

The execution time for both steps 3 and 4 can see like:

Texe = N(Ti(N) + Tj) +O(n). (17)

Let Nbr iter the number of iteration necessary to compute all the roots,so
the total execution time Total timeexe can give like:

Total timeexe = [N (Ti(N) + Tj) +O(n)] .Nbr iter. (18)

The execution time increase with the increasing of the polynomial’s root,
which take necessary to parallelize this step to reduce the execution time.
In the following paper you explain how we parrallelize this step using GPU
architecture with CUDA platform.

8

5.3.2 Parallelize the steps on GPU

On the CPU Aberth algorithm both steps 3 and 4 contain the loop for ,
it use one thread to execute all the instruction in the loop N times.Here we
explain how the GPU architecture can compute this loop and reduce the
execution time. The GPU architecture affect the execution of this loop to a
groups of parallel threads organized as a grid of blocks each block contain a
number of threads. All threads within a block are executed concurrently in
parallel. the instruction are executed as a kernel.

Let nbr thread be the number of threads executed in parallel, so you can
easily transform the (18)formula like this:

Total timeexe =

[
N

nbr thread
(Ti(N) + Tj) +O(n)

]
.Nbr iter. (19)

In theory, the Total timeexe on GPU is speed up nbr thread times as a
Total timeexe on CPU. We show more details in the experiment part.

In CUDA platform, All the instruction of the loop for are executed by
the GPU as a kernel form. A kernel is a procedure written in CUDA and
defined by a heading __global__, which means that it is to be executed by
the GPU.the following algorithm see the Aberth algorithm on GPU:

Algorithm 2: Algorithm to find root polynomial with Aberth method

Input: Z0(Initial root’s vector),ε (error tolerance
threshold),P(Polynomial to solve)

Output: Z(The solution root’s vector)

1 Initialization of the parameter of the polynomial to solve;
2 Initialization of the solution vector Z0;
3 Allocate and fill the data in the global memory GPU;
4 while ∆zmax � ε do
5 Let ∆zmax = 0;

6 kernel save(d Zk−1);

7 kernel update(d zk);

8 kernel testConverge(d?zmax, d
k
Z , d

k−1
Z);

After the initialization step, all data of the root finding problem to be
solved must be copied from the CPU memory to the GPU global memory, be-
cause the GPUs only work on the data filled in their memories. Next, all the
data-parallel arithmetic operations inside the main loop (do ... while(...))

are executed as kernels by the GPU. The first kernel save in line(6, Algo-
rithm 2) consist to save the vector of polynomial’s root found at the previous

9

time step on GPU memory, in order to test the convergence of the root at
each iteration in line (8, Algorithme2).

The second kernel executes the iterative function and update Z(k),as for-
mula (), we notice that the kernel update are called in two forms, separated
with the value of R which determines the radius beyond which we apply the
logarithm formula like this:

Algorithm 3: A global Algorithm for the iterative function

if (
∣∣Z(k)

∣∣ <= R) then
kernel update(d zk);

else
kernel update Log(d zk);

The first form execute the formula(8) if all the module’s (|Z(k)| <= R),
else the kernel execute the formulas(13,14).the radius R was computed like:

R = exp(log(DBL MAX)/(2 ∗ (double)P.degrePolynome))

The last kernel verify the convergence of the root after each update of
Z(k), as formula(), we used the function of the CUBLAS Library (CUDA
Basic Linear Algebra Subroutines) to implement this kernel.

The kernels terminates its computations when all the root are con-
verged. Finally, the solution of the root finding problem is copied back
from the GPU global memory to the CPU memory. We use the com-
munication functions of CUDA for the memory allocations in the GPU
(cudaMalloc()) and the data transfers from the CPU memory to the GPU
memory (cudaMemcpyHostToDevice) or from the GPU memory to the CPU
memory (cudaMemcpyDeviceToHost)).

5.4 Experimental study

5.4.1 Definition of the polynomial used

We use a polynomial of the following form for which the roots are distributed
on 2 distinct circles:

∀α1α2 ∈ C,∀n1, n2 ∈ N∗;P (z) = (zn
1 − α1)(z

n2 − α2) (20)

This form makes it possible to associate roots having two different mod-
ules and thus to work on a polynomial constitute of four non zero terms.
An other form of the polynomial to obtain more non zero terms is:

∀αi ∈ C,∀ni ∈ N∗;P (z) =

i=1∑
p

(zn
i − αi) (21)

with this formula, we can have until 2p non zero terms.

10

5.4.2 The study condition

In order to have representative average values, for each point of our curves
we measured the roots finding of 10 different polynomials.

The our experiences results concern two parameters which are the poly-
nomial degree and the execution time of our program to converge on the
solution. The polynomial degree allows us to validate that our algorithm
is powerful with high degree polynomials. The execution time remains the
element-key which justifies our work of parallelization. For our tests we used
a CPU Intel(R) Xeon(R) CPU E5620@2.40GHz and a GPU Tesla C2070
(with 6 Go of ram)

5.4.3 Comparative study

We initially carried out the convergence of Aberth algorithm with various
sizes of polynomial, in second we evaluate the influence of the size of the
threads per block....

Polynomial’s
degrees Texe on CPU Texe on GPU

CPU
iteration

GPU
iteration

5000 1.90 0.40 18 17

50000 172.723 3.92 21 18

500000 – 497.109 – 24

1000000 – 1524,51 – 24

Table 1: the convergence of Aberth algorithm

The convergence of Aberth algorithm

Tread’s
numbers

Execution
time

Number of
iteration

1024 523 27

512 449.426 24

256 440.805 24

128 456.175 22

64 472.862 23

32 830.152 24

8 2632.78 23

Table 2: The impact of the thread’s number into the convergence of Aberth
algorithm

11

The impact of the thread’s number into the convergence of Aberth
algorithm

Polynomial’s
degrees Aberth Texe D-Kerner Texe

Aberth
iteration

D-
Kerner
iteration

5000 0.40 3.42 17 138

50000 3.92 385.266 17 823

500000 497.109 4677.36 24 214

Table 3: Aberth algorith compare to Durand-Kerner algorithm

A comparative study between Aberth and Durandkerner algo-
rithm

References

[1] Compute Unified Device Architecture Programming Guide Version 3.0.

[2] O. Aberth. Iteration methods for finding all zeros of a polynomial
simultaneously. Mathematics of Computation, 27(122):339–344, 1973.

[3] A.Ostrowski. On a theorem by j.l. walsh concerning the moduli of
roots of algebraic equations,bull. a.m.s. Algorithmes itératifs paralléles
et distribués, 1(47):742–746, 1941.

[4] C.Raphael and S.François. Extraction de racines dans des polynômes
creux de degrées élevés.rsrcp (réseaux et systèmes répartis, calculateurs
parallèles). Algorithmes itératifs paralléles et distribués, 1(13):67–81,
1990.

[5] D.A.Bini. Numerical computation of polynomial zeros by means of
aberth s method. Numerical Algorithms, 13(4):179–200, 1996.

[6] L.Gemignani DA.Bini. Inverse power and durand kerner iterations for
univariate polynomial root finding. Comput Math Appl, (47):447–459,
2004.

[7] E.Durand. Solution numerique des equations algebriques, vol. 1, equa-
tions du type f(x)=0, racines d’une polynome. Vol.1, 1960.

[8] G.Kahina, C.Raphael, and S.Abderrahmane. parallel implementation
of the durand-kerner algorithm for polynomial root-finding on gpu.
IEEE. Conf. on advanced Networking, Distributed Systems and Ap-
plications, pages 53–57, 2014.

12

[9] G.Loizon. Higher-order iteration functions for simultaneously approxi-
mating polynomial zeros. Intern. J. Computer Math, (14):45–58, 1983.

[10] GS.Schedler. Parallel iteration methods in complexity of computer com-
munications. Commun ACM, pages 286–290, 1967.

[11] HS.Azad. The performance of synchronous parallel polynomial root ex-
traction on a ring multicomputer. Clust Comput, 2(10):167–174, 2007.

[12] I.O.Kerner. Ein gesamtschritteverfahren zur berechnung der nullstellen
von polynomen. (8):290–294, 1966.

[13] K.Docev. An alternative method of newton for simultaneous calculation
of all the roots of a given algebraic equation. Phys. Math. J, (5):136–
139, 1962.

[14] F.Spies K.Rhofir and Jean-Claude Miellou. Perfectionnements de la
méthode asynchrone de durand-kerner pour les polynômes complexes.
Calculateurs Parallèles, 10(4):449–458, 1998.

[15] K.Weierstrass. Neuer beweis des satzes, dass jede ganze rationale func-
tion einer veranderlichen dagestellt werden kann als ein product aus
linearen functionen derselben veranderlichen. Ges. Werke, 3:251–269,
1903.

[16] L.Gemignani. Structured matrix methods for polynomial root finding.
n: Proc of the 2007 Intl symposium on symbolic and algebraic compu-
tation, pages 175–180, 2007.

[17] L.Ilieff. On the approximations of newton. Annual Sofia Univ, (46):167–
171, 1950.

[18] M.Ben-Or, E.Feig, D.Kozzen, and P.Tiwary. A fast parallel algorithm
for determining all roots of a polynomial with real roots. Int: Proc of
ACM, pages 340–349, 1968.

[19] P.Fraigniaud M.Cosnard. Finding the roots of a polynomial on an mimd
multicomputer. Parallel Comput, 15(3):75–85, 1990.

[20] NVIDIA. NVIDIA CUDA C Programming Guide, volume 7 of 001.
PG, march 2015.

[21] PK.Jana. Finding polynomial zeroes on a multi-mesh of trees (mmt).
In: Proc of the 2nd int conference on information technology, pages
202–206, 1999.

[22] PK.Jana. Polynomial interpolation and polynomial root finding on
otis-mesh. Parallel Comput, 32(3):301–312, 2006.

13

[23] R.Datta Gupta PK.Jana, BP.Sinha. Efficient parallel algorithms for
finding polynomial zeroes. Proc of the 6th int conference on ad-
vance computing, CDAC, Pune University Campus,India, 15(3):189–
196, 1999.

[24] S.Winogard. Parallel iteration methods in complexity of computer com-
munications. Plenum, New York, 1972.

[25] LH.Jamieson TA.Rice. A highly parallel algorithm for root extraction.
IEEE Trans Comp, 38(3):443–449, 2006.

[26] T.L.Freeman. Calculating polynomial zeros on a local memory parallel
computer. Parallel Computing, (12):351–358, 1989.

[27] T.L.Freeman and R.K.Brankin. Asynchronous polynomial zero-finding
algorithms. Parallel Computing, (17):673–681, 1990.

[28] V.Skachek. Structured matrix methods for polynomial root finding. n:
Proc of the 2007 Intl symposium on symbolic and algebraic computation,
pages 175–180, 2008.

[29] W.Borch-Supan. A posteriori error for the zeros of polynomials.
(5):380–398, 1963.

[30] L. W.Ehrlich. A modified newton method for polynomials. Comm. Ass.
Comput. Mach., (10):107–108, 1967.

[31] WL.Mirankar. Parallel methods for approximating the roots of a func-
tion. IBM Res Dev, 30:297–301, 1968.

[32] WL.Mirankar. A survey of parallelism in numerical analysis. SIAM
Rev, pages 524–547, 1971.

[33] D.Lin W.Zhu, w.Zeng. an adaptive algorithm finding multiple roots of
polynomials. Lect Notes Comput Sci, (5262):674–681, 2008.

[34] Z.Yi X.Zhanc, M.Wan. A constrained learning algorithm for finding
multiple real roots of polynomial. In: Proc of the 2008 intl symposium
on computational intelligence and design, pages 38–41, 2008.

14

