
A parallel root finding polynomial on GPU

Elsevier1

Radarweg 29, Amsterdam

Ghidouche Kahinaa,∗, Couturier Raphaelb,∗, Abderrahmane Sidera,∗

aDepartment of informatics,University of Bejaia,Algeria
bFEMTO-ST Institute, University of Franche-Compt

Abstract

in this article we present a parallel implementation of the Aberth algorithm

for the problem root finding for high degree polynomials on GPU architecture

(Graphics Processing Unit).

Keywords: root finding of polynomials, high degree, iterative methods,

Durant-Kerner, GPU, CUDA, CPU , Parallelization

1. Root finding problem

We consider a polynomial of degree n having coefficients in the complex C

and zeros αi, i=1,...,n.

p(x) =
∑

aix
i = an

∏
(x− αi), a0an 6= 0 (1)

The root finding problem consist to find all n root of p(x). the problem of

finding a root is equivalent to the problem of finding a fixed-point. To see this

consider the fixed-point problem of finding the n-dimensional vector x such that

x = g(x).5

∗Corresponding author
Email addresses: kahina.ghidouche@gmail.com (Ghidouche Kahina),

raphael.couturier@univ-fcomte.fr (Couturier Raphael), ar.sider@univ-bejaia.dz
(Abderrahmane Sider)

1Since 1880.

Preprint submitted to Journal of LATEX Templates October 20, 2015

Where g : Cn −→ Cn. Note that we can easily rewrite this fixed-point problem

as a root-finding problem by setting f(x) = x− g(x) and likewise we can recast

the root-finding problem into a fixed-point problem by setting

g(x) = f(x)− x

Often it will not be possible to solve such nonlinear equation root-finding prob-

lems analytically. When this occurs we turn to numerical methods to approx-

imate the solution. Generally speaking, algorithms for solving problems nu-

merically can be divided into two main groups: direct methods and iterative

methods.

Direct methods exist only for n ≤ 4,solved in closed form by G. Cardano in

the mid-16th century. However, N.H. Abel in the early 19th century showed

that polynomials of degree five or more could not be solved by directs methods.

Since then researchers have concentrated on numerical (iterative) methods such

as the famous Newton’s method, Bernoulli’s method of the 18th, and Graeffe’s.

With the advent of electronic computers, different methods has been developed

such as the Jenkins-Traub method, Larkin s method, Muller’s method, and sev-

eral methods for simultaneous approximation of all the roots, starting with the

Durand-Kerner method:

Zi = Zi −
P (Zi)∏

i 6=j(zi − zj)
(2)

This formula is mentioned for the first time from Weiestrass [1] as part of the

fundamental theorem of Algebra and is rediscovered from Ilieff [2], Docev [3],

Durand [4], Kerner [5]. Another method discovered from Borsch-Supan [6] and

also described and brought in the following form from Ehrlich [7] and Aberth [8].

Zi = Zi −
1

P ′(Zi)
P (Zi)

−
∑
i 6=j(zi − zj)

(3)

Aberth, Ehrlich and Farmer-Loizou [9] have proved that the above method10

has cubic order of convergence for simple roots.

Iterative methods raise several problem when implemented e.g. specific sizes

of numbers must be used to deal with this difficulty.Moreover,the convergence

2

time of iterative methods drastically increase like the degrees of high polynomi-

als. The parallelization of these algorithms will improve the convergence time.15

Many authors have treated the problem of parallelization of simultaneous

methods. Freeman [10] has tested the DK method, EA method and another

method of the fourth order proposed from Farmer and Loizou [9],on a 8- pro-

cessor linear chain, for polynomial of degree up to 8. The third method often

diverges, but the first two methods have speed-up 5.5 (speed-up=(Time on one20

processor)/(Time on p processors)). Later Freeman and Bane [11] consider

asynchronous algorithms, in which each processor continues to update its ap-

proximations even although the latest values of other zi((k)) have not received

from the other processors, in difference with the synchronous version where it

would wait. in [12]proposed two methods of parallelization for architecture with25

shared memory and distributed memory,it able to compute the root of polyno-

mial degree 10000 on 430 s with only 8 pc and 2 communications per iteration.

Compare to the sequential it take 3300 s to obtain the same results.

After this few works discuses this problem until the apparition of the Com-

pute Unified Device Architecture (CUDA) [13],a parallel computing platform30

and a programming model invented by NVIDIA. The computing ability of GPU

has exceeded the counterpart of CPU. It is a waste of resource to be just a graph-

ics card for GPU. CUDA adopts a totally new computing architecture to use

the hardware resources provided by GPU in order to offer a stronger computing

ability to the massive data computing.35

Indeed, [14]proposed the implementation of the Durand-Kerner method on

GPU (Graphics Processing Unit). The main result prove that a parallel imple-

mentation is 10 times as fast as the sequential implementation on a single CPU

for high degree polynomials that is greater than about 48000.

. The mean part of our work is to implement the Aberth method for the prob-40

lem root finding for high degree polynomials on GPU architecture (Graphics

Processing Unit). Initially we present the Aberth method in section 1. Ame-

lioration of Aberth method was proposed in section 2. A related works for the

3

implementation of simultaneous methods in a parallel computer was discuss in

section 3. Section 4 we propose a parallel implementation of Aberth method on45

GPU. Section 5, we present our result and discuss it. Finally, in Section 6, we

present our conclusions and future research directions.

2. Aberth method

A cubically convergent iteration method for finding zeros of polynomials

was proposed by O.Aberth [8]. The Aberth method is a purely algebraic deriva-50

tion.To illustrate the derivation, we let wi(z) be the product of linear factor

wi(z) =

n∏
j=1,j 6=i

(z − xj) (4)

And rational function Ri(z) be the correction term of Weistrass method [1]:

Ri(z) =
p(z)

wi(z)
, i = 1, 2, ..., n (5)

Differentiating the rational function Ri(z) and applying the Newton method,

we have:

Ri(z)

R
′
i(z)

=
p(z)

p′(z)− p(z)wi(z)

w
′
i(z)

=
p(z)

p′(z)− p(z)
∑n
j=1,j 6=i

1
z−xi

, i = 1, 2, ..., n (6)

Substituting xj for z we obtain the Aberth iteration method55

Let present the means stages of Aberth method.

2.1. Polynomials Initialization

The initialization of polynomial P(z) with complex coefficients are given by:

p(z) =
∑

aiz
n−i, an 6= 0, a0 = 1, ai ⊂ C (7)

4

2.2. Vector Z(0) Initialization

The choice of the initial points z
(0)
i , i = 1, ..., n. from which starting the60

iteration (2) or (3), is rather delicate since the number of steps needed by

the iterative method to reach a given approximation strongly depends on it.

In [8]the Aberth iteration is started by selecting n equispaced points on a circle

of center 0 and radius r, where r is an upper bound to the moduli of the zeros.

After, [15] performs this choice by selecting complex numbers along different65

circles and relies on the result of [16].

σ0 =
u+ v

2
;u =

∑n
i=1 ui

n.maxni=1ui
; v =

∑n−1
i=0 vi

n.minn−1i=0 vi
; (8)

Where:

ui = 2.|ai|
1
i ; vi =

|anai |
1

n−i

2
. (9)

2.3. Iterative Function Hi

The operator used with Aberth method is corresponding to the following

equation which will enable the convergence towards polynomial solutions, pro-

vided all the roots are distinct.70

Hi(z) = zi −
1

P ′ (zi)
P (zi)

−
∑
j 6=i

1
zi−zj

(10)

2.4. Convergence condition

Determines the success of the termination. It consists in stopping the itera-

tive function Hi(z) when the root are stable, the method converge sufficiently:

∀i ∈ [1, n];
z
(k)
i − z(k−1)i

z
(k)
i

< ξ (11)

3. Amelioration of Aberth method

The Aberth method implementation suffer of overflow problems. This sit-75

uation occurs, for instance, in the case where a polynomial having positive

coefficients and large degree is computed at a point ξ where |ξ| > 1. Indeed

5

the limited number in the mantissa of floating takings the computation of P(z)

wrong when z is large. for example (1050)+1+(−1050) will give result 0 instead

of 1 in reality. Consequently we can not compute the roots for large polyno-80

mial’s degree. This problem was discuss in [17] for the Durand-Kerner method,

the authors propose to use the logarithm and the exponential of a complex:

∀(x, y) ∈ R∗2; ln(x+ i.y) = ln(x2 + y2)2 + i. arcsin(y
√
x2 + y2)]−π,π[(12)

∀(x, y) ∈ R∗2; exp(x+ i.y) = exp(x). exp(i.y) (13)

= exp(x). cos(y) + i. exp(x). sin(y) (14)

The application of logarithm can replace any multiplications and divisions

with additions and subtractions. Consequently, it manipulates lower absolute

values and can be compute the roots for large polynomial’s degree exceed [17].85

Applying this solution for the Aberth method we obtain the iteration func-

tion with logarithm:

Hi(z) = zki − exp
(

ln (p(zk))− ln
(
p(z

′

k)
)
− ln (1−Q(zk))

)
(15)

Where:

Q(zk) = exp

ln(p(zk))− ln(p(z
′

k)) + ln

 n∑
k 6=j

1

zk − zj

 (16)

This solution is applying when it is necessary

4. The implementation of simultaneous methods in a parallel com-

puter

The main problem of the simultaneous methods is that the necessary time90

needed for the convergence is increased with the increasing of the degree of the

polynomial. The parallelization of these algorithms will improve the conver-

gence time. Researchers usually adopt one of the two following approaches to

6

parallelize root finding algorithms. One approach is to reduce the total number

of iterations as implemented by Miranker [18, 19], Schedler [20] and Winog-95

ard [21]. Another approach is to reduce the computation time per iteration, as

reported in [22, 23, 24, 25]. There are many schemes for simultaneous approxi-

mations of all roots of a given polynomial. Several works on different methods

and issues of root finding have been reported in [26, 27, 28, 29, 30, 31]. How-

ever, Durand-Kerner and Ehrlich methods are the most practical choices among100

them [32]. These two methods have been extensively studied for parallelization

due to their following advantages. The computation involved in these methods

has some inherent parallelism that can be suitably exploited by SIMD machines.

Moreover, they have fast rate of convergence (quadratic for the Durand-Kerner

method and cubic for the Ehrlich). Various parallel algorithms reported for105

these methods can be found in [33, 10, 11? , 34, 24]. Freeman and Bane [11]

presented two parallel algorithms on a local memory MIMD computer with the

compute-to communication time ratio O(n). However, their algorithms require

each processor to communicate its current approximation to all other processors

at the end of each iteration. Therefore they cause a high degree of memory con-110

flict. Recently the author in [19] proposed two versions of parallel algorithm for

the Durand-Kerner method, and Aberth method on model of Optoelectronic

Transpose Interconnection System (OTIS).The algorithms are mapped on an

OTIS-2D torus using N processors. This solution need N processors to compute

N roots, that it is not practical (is not suitable to compute large polynomial’s115

degrees). Until then, the related works are not able to compute the root of the

large polynomial’s degrees (higher then 1000) and with small time.

Finding polynomial roots rapidly and accurately it is our objective, with

the apparition of the CUDA(Compute Unified Device Architecture), finding the

roots of polynomials becomes rewarding and very interesting, CUDA adopts a120

totally new computing architecture to use the hardware resources provided by

GPU in order to offer a stronger computing ability to the massive data com-

puting. In [14] we proposed the first implantation of the root finding polyno-

mials method on GPU (Graphics Processing Unit),which is the Durand-Kerner

7

method. The main result prove that a parallel implementation is 10 times as125

fast as the sequential implementation on a single CPU for high degree poly-

nomials that is greater than about 48000. Indeed, in this paper we present a

parallel implementation of Aberth method on GPU, more details are discussed

in the following of this paper.

5. A parallel implementation of Aberth method130

5.1. Background on the GPU architecture

A GPU is viewed as an accelerator for the data-parallel and intensive arith-

metic computations. It draws its computing power from the parallel nature of

its hardware and software architectures. A GPU is composed of hundreds of

Streaming Processors (SPs) organized in several blocks called Streaming Mul-135

tiprocessors (SMs). It also has a memory hierarchy. It has a private read-write

local memory per SP, fast shared memory and read-only constant and texture

caches per SM and a read-write global memory shared by all its SPs [35]

On a CPU equipped with a GPU, all the data-parallel and intensive functions

of an application running on the CPU are off-loaded onto the GPU in order to140

accelerate their computations. A similar data-parallel function is executed on

a GPU as a kernel by thousands or even millions of parallel threads, grouped

together as a grid of thread blocks. Therefore, each SM of the GPU executes

one or more thread blocks in SIMD fashion (Single Instruction, Multiple Data)

and in turn each SP of a GPU SM runs one or more threads within a block145

in SIMT fashion (Single Instruction, Multiple threads). Indeed at any given

clock cycle, the threads execute the same instruction of a kernel, but each of

them operates on different data. GPUs only work on data filled in their global

memories and the final results of their kernel executions must be communicated

to their CPUs. Hence, the data must be transferred in and out of the GPU.150

However, the speed of memory copy between the GPU and the CPU is slower

than the memory bandwidths of the GPU memories and, thus, it dramatically

8

affects the performances of GPU computations. Accordingly, it is necessary to

limit data transfers between the GPU and its CPU during the computations.

5.2. Background on the CUDA Programming Model155

The CUDA programming model is similar in style to a single program

multiple-data (SPMD) softwaremodel. The GPU is treated as a coprocessor

that executes data-parallel kernel functions. CUDA provides three key abstrac-

tions, a hierarchy of thread groups, shared memories, and barrier synchroniza-

tion. Threads have a three level hierarchy. A grid is a set of thread blocks that160

execute a kernel function. Each grid consists of blocks of threads. Each block

is composed of hundreds of threads. Threads within one block can share data

using shared memory and can be synchronized at a barrier. All threads within a

block are executed concurrently on a multithreaded architecture.The program-

mer specifies the number of threads per block, and the number of blocks per165

grid. A thread in the CUDA programming language is much lighter weight than

a thread in traditional operating systems. A thread in CUDA typically processes

one data element at a time. The CUDA programming model has two shared

read-write memory spaces, the shared memory space and the global memory

space. The shared memory is local to a block and the global memory space is170

accessible by all blocks. CUDA also provides two read-only memory spaces, the

constant space and the texture space, which reside in external DRAM, and are

accessed via read-only caches.

9

5.3. The implementation of Aberth method on GPU

5.3.1. A sequential Aberth algorithm175

The means steps of Aberth method can expressed as an algorithm like:

Algorithm 1: Algorithm to find root polynomial with Aberth method

Input: Z0(Initial root’s vector),ε (error tolerance

threshold),P(Polynomial to solve)

Output: Z(The solution root’s vector)

1 Initialization of the parameter of the polynomial to solve;

2 Initialization of the solution vector Z0;

3 while ∆zmax � ε do

4 Let ∆zmax = 0;

5 for j ← 0 to n do

6 ZPrec [j] = Z [j];

7 Z [j] = H (j, Z);

8 for i← 0 to n− 1 do

9 c = |Z[i]−ZPrec[i]|
Z[i] ;

10 if c � ∆zmax then

11 ∆zmax=c;

In this sequential algorithm one thread CPU execute all steps. Let see the

step 3 the execution of the iterative function, 2 instructions are needed, the180

first instruction save the solution vector for the previous iteration, the second

instruction update or compute a new values of the roots. We have two manner

to execute the iterative function, taking a Jacobi iteration who need all the

previous value z
(k)
i to compute the new value z

(k+1)
i we have:

H(i, zk+1) =
p(z

(k)
i)

p′(z
(k)
i)− p(z(k)i)

∑n
j=1j 6=i

1

z
(k)
i −z

(k)
j

, i = 1, ..., n. (17)

10

Or with the Gauss-seidel iteration, we have:

H(i, zk+1) =
p(z

(k)
i)

p′(z
(k)
i)− p(z(k)i)

∑i−1
j=1

1

z
(k)
i −z

(k+1)
j

+
∑n
j=i+1

1

z
(k)
i −z

(k)
j

, i = 1, ..., n.

(18)

In formula(16), the Gauss-seidel iteration converge more quickly because185

they used the most fresh computed root zk+1
i , at this reason we used Gauss-

seidel iteration.

The steps 4 of the Aberth method compute the convergence of the roots,

using(9) formula. Both steps 3 and 4 use 1 thread to compute N roots on CPU,

which is harmful for the large polynomial’s roots finding.190

The execution time. Let Ti(N): the time to compute one new root’s value of

the step 3,Ti depend on the polynomial’s degrees N, when N increase Ti increase

to. We need N.Ti(N) to compute all the new root’s value in one iteration on

the step 3.

Let Tj : the time to compute one root’s convergence value of the step 4, we195

need N.Tj to compute all the root’s convergence value in one iteration on the

step 4.

The execution time for both steps 3 and 4 can see like:

Texe = N(Ti(N) + Tj) +O(n). (19)

Let Nbr iter the number of iteration necessary to compute all the roots, so the

total execution time Total timeexe can give like:

Total timeexe = [N (Ti(N) + Tj) +O(n)] .Nbr iter (20)

The execution time increase with the increasing of the polynomial’s root, which200

take necessary to parallelize this step to reduce the execution time. In the

following paper you explain how we parrallelize this step using GPU architecture

with CUDA platform.

11

5.3.2. Parallelize the steps on GPU

On the CPU Aberth algorithm both steps 3 and 4 contain the loop for, it use205

one thread to execute all the instruction in the loop N times. Here we explain

how the GPU architecture can compute this loop and reduce the execution time.

The GPU architecture assign the execution of this loop to a groups of parallel

threads organized as a grid of blocks each block contain a number of threads.

All threads within a block are executed concurrently in parallel. The instruction210

are executed as a kernel.

Let nbr thread be the number of threads executed in parallel, so you can

easily transform the (18)formula like this:

Total timeexe =

[
N

nbr thread
(Ti(N) + Tj) +O(n)

]
.Nbr iter. (21)

In theory, the Total timeexe on GPU is speed up nbr thread times as a

Total timeexe on CPU. We show more details in the experiment part.215

In CUDA platform, All the instruction of the loop for are executed by the

GPU as a kernel form. A kernel is a procedure written in CUDA and defined

by a heading __global__, which means that it is to be executed by the GPU.

12

The following algorithm see the Aberth algorithm on GPU:220

Algorithm 2: Algorithm to find root polynomial with Aberth method

Input: Z0(Initial root’s vector),ε (error tolerance

threshold),P(Polynomial to solve)

Output: Z(The solution root’s vector)

1 Initialization of the parameter of the polynomial to solve;

2 Initialization of the solution vector Z0;

3 Allocate and fill the data in the global memory GPU;

4 while ∆zmax � ε do

5 Let ∆zmax = 0;

6 kernel save(d Zk−1);

7 kernel update(d zk);

8 kernel testConverge(d?zmax, d
k
Z , d

k−1
Z);

After the initialization step, all data of the root finding problem to be solved

must be copied from the CPU memory to the GPU global memory, because the225

GPUs only work on the data filled in their memories. Next, all the data-parallel

arithmetic operations inside the main loop (do ... while(...)) are executed

as kernels by the GPU. The first kernel save in line(6, Algorithm 2) consist to

save the vector of polynomial’s root found at the previous time step on GPU

memory, in order to test the convergence of the root at each iteration in line (8,230

Algorithm 2).

The second kernel executes the iterative function and update Z(k),as formula

(), we notice that the kernel update are called in two forms, separated with the

value of R which determines the radius beyond which we apply the logarithm

13

formula like this:235

Algorithm 3: A global Algorithm for the iterative function

if (
∣∣Z(k)

∣∣ <= R) then

kernel update(d zk);

else

kernel update Log(d zk);

The first form execute the formula(8) if all the module’s (|Z(k)| <= R), else

the kernel execute the formulas(13,14).the radius R was computed like:

R = exp(log(DBL MAX)/(2 ∗ (double)P.degrePolynome))

The last kernel verify the convergence of the root after each update of Z(k),

as formula(), we used the function of the CUBLAS Library (CUDA Basic Linear240

Algebra Subroutines) to implement this kernel.

The kernels terminates its computations when all the root are converged.

Finally, the solution of the root finding problem is copied back from the GPU

global memory to the CPU memory. We use the communication functions of

CUDA for the memory allocations in the GPU (cudaMalloc()) and the data245

transfers from the CPU memory to the GPU memory (cudaMemcpyHostToDevice)

or from the GPU memory to the CPU memory (cudaMemcpyDeviceToHost)).

5.4. Experimental study

5.4.1. Definition of the polynomial used

We use a polynomial of the following form for which the roots are distributed

on 2 distinct circles:

∀α1α2 ∈ C, ∀n1, n2 ∈ N∗;P (z) = (zn
1

− α1)(zn
2

− α2) (22)

This form makes it possible to associate roots having two different modules250

and thus to work on a polynomial constitute of four non zero terms.

An other form of the polynomial to obtain a full polynomial is:

∀ai ∈ C; p(x) =

n−1∑
i=1

ai.x
i (23)

14

with this formula, we can have until n non zero terms.

5.4.2. The study condition

In order to have representative average values, for each point of our curves255

we measured the roots finding of 10 different polynomials.

The our experiences results concern two parameters which are the polyno-

mial degree and the execution time of our program to converge on the solution.

The polynomial degree allows us to validate that our algorithm is powerful with

high degree polynomials. The execution time remains the element-key which260

justifies our work of parallelization. For our tests we used a CPU Intel(R)

Xeon(R) CPU E5620@2.40GHz and a GPU Tesla C2070 (with 6 Go of ram)

5.4.3. Comparative study

We initially carried out the convergence of Aberth algorithm with various

sizes of polynomial, in second we evaluate the influence of the size of the threads265

per block....

Polynomial’s

degrees Texe on CPU Texe on GPU

CPU

iteration

GPU

iteration

5000 1.90 0.40 18 17

10000 172.723 0.59 21 24

20000 172.723 1.52 21 25

30000 172.723 2.77 21 33

50000 172.723 3.92 21 18

500000 >1h 497.109 24

1000000 >1h 1,524.51 24

Table 1: the convergence of Aberth algorithm

Aberth algorithm on CPU and GPU.

The impact of the thread’s number into the convergence of Aberth algorithm.

15

Thread’s

numbers Execution time

Number of

iteration

1024 523 27

512 449.426 24

256 440.805 24

128 456.175 22

64 472.862 23

32 830.152 24

8 2632.78 23

Table 2: The impact of the thread’s number into the convergence of Aberth algorithm

Polynomial’s

degrees Aberth Texe D-Kerner Texe

Aberth

iteration

D-Kerner

iteration

5000 0.40 3.42 17 138

50000 3.92 385.266 17 823

500000 497.109 4677.36 24 214

Table 3: Aberth algorithm compare to Durand-Kerner algorithm

A comparative study between Aberth and Durand-kerner algorithm.

References270

[1] K. Weierstrass, Neuer beweis des satzes, dass jede ganze rationale function

einer veranderlichen dagestellt werden kann als ein product aus linearen

functionen derselben veranderlichen, Ges. Werke 3 (1903) 251–269.

[2] L. Ilieff, On the approximations of newton, Annual Sofia Univ (46) (1950)

167–171. doi:10.1016/0003-4916(63)90068-X.275

[3] K. Docev, An alternative method of newton for simultaneous calculation

16

http://dx.doi.org/10.1016/0003-4916(63)90068-X

of all the roots of a given algebraic equation, Phys. Math. J (5) (1962)

136–139.

[4] E. Durand, Solution numerique des equations algebriques, vol. 1, equations

du type f(x)=0, racines d’une polynome Vol.1.280

[5] I. Kerner, Ein gesamtschritteverfahren zur berechnung der nullstellen von

polynomen (8) (1966) 290–294.

[6] W. Borch-Supan, A posteriori error for the zeros of polynomials (5) (1963)

380–398.

[7] L. Ehrlich, A modified newton method for polynomials, Comm. Ass. Com-285

put. Mach. (10) (1967) 107–108.

[8] O. Aberth, Iteration methods for finding all zeros of a polynomial simul-

taneously, Mathematics of Computation 27 (122) (1973) 339–344. doi:

10.1016/0003-4916(63)90068-X.

[9] G. Loizon, Higher-order iteration functions for simultaneously approximat-290

ing polynomial zeros, Intern. J. Computer Math (14) (1983) 45–58.

[10] T. Freeman, Calculating polynomial zeros on a local memory parallel com-

puter, Parallel Computing (12) (1989) 351–358.

[11] T. Freeman, R. Brankin, Asynchronous polynomial zero-finding algorithms,

Parallel Computing (17) (1990) 673–681.295

[12] R. Couturier, F. Spetiri, Extraction de racines dans des polynmes creux de

degres levs.rsrcp (rseaux et systmes rpartis, calculateurs parallles), Algo-

rithmes itratifs parallles et distribus 1 (13) (1990) 67–81.

[13] Compute Unified Device Architecture Programming Guide Version 3.0.

[14] K. Ghidouche, R. Couturie, A. Sider, parallel implementation of the300

durand-kerner algorithm for polynomial root-finding on gpu, IEEE. Conf.

on advanced Networking, Distributed Systems and Applications (2014) 53–

57.

17

http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X

[15] D. Bini, Numerical computation of polynomial zeros by means of aberth s

method, Numerical Algorithms 13 (4) (1996) 179–200.305

[16] A. Ostrowski, On a theorem by j.l. walsh concerning the moduli of roots of

algebraic equations,bull. a.m.s., Algorithmes itratifs parallles et distribus

1 (47) (1941) 742–746.

[17] K. Rhofir, F. Spies, J.-C. Miellou, Perfectionnements de la mthode asyn-

chrone de durand-kerner pour les polynmes complexes, Calculateurs Par-310

allles 10 (4) (1998) 449–458.

[18] W. Mirankar, Parallel methods for approximating the roots of a function,

IBM Res Dev 30 (1968) 297–301.

[19] W. Mirankar, A survey of parallelism in numerical analysis, SIAM Rev

(1971) 524–547.315

[20] G. Schedler, Parallel iteration methods in complexity of computer commu-

nications, Commun ACM (1967) 286–290.

[21] S. Winogard, Parallel iteration methods in complexity of computer com-

munications, Plenum, New York.

[22] M. Ben-Or, E. Feig, D. Kozzen, P. Tiwary, A fast parallel algorithm for320

determining all roots of a polynomial with real roots, Int: Proc of ACM

(1968) 340–349.

[23] P. Jana, Polynomial interpolation and polynomial root finding on otis-

mesh, Parallel Comput 32 (3) (2006) 301–312.

[24] P. Jana, B. Sinha, R. D. Gupta, Efficient parallel algorithms for finding325

polynomial zeroes, Proc of the 6th int conference on advance computing,

CDAC, Pune University Campus,India 15 (3) (1999) 189–196.

[25] T. Rice, L. Jamieson, A highly parallel algorithm for root extraction, IEEE

Trans Comp 38 (3) (2006) 443–449.

18

[26] H. Azad, The performance of synchronous parallel polynomial root extrac-330

tion on a ring multicomputer, Clust Comput 2 (10) (2007) 167–174.

[27] L. Gemignani, Structured matrix methods for polynomial root finding., n:

Proc of the 2007 Intl symposium on symbolic and algebraic computation

(2007) 175–180.

[28] B. Kalantari, Polynomial root finding and polynomiography., World Scien-335

tifict,New Jersey.

[29] V. Skachek, Structured matrix methods for polynomial root finding., n:

Proc of the 2007 Intl symposium on symbolic and algebraic computation

(2008) 175–180.

[30] X. Zhanc, Z. M. Wan, A constrained learning algorithm for finding mul-340

tiple real roots of polynomial, In: Proc of the 2008 intl symposium on

computational intelligence and design (2008) 38–41.

[31] W. Zhu, w. Zeng, D. Lin, an adaptive algorithm finding multiple roots of

polynomials, Lect Notes Comput Sci (5262) (2008) 674–681.

[32] D. Bini, L. Gemignani, Inverse power and durand kerner iterations for345

univariate polynomial root finding, Comput Math Appl (47) (2004) 447–

459.

[33] M. Cosnard, P. Fraigniaud, Finding the roots of a polynomial on an mimd

multicomputer, Parallel Comput 15 (3) (1990) 75–85.

[34] P. Jana, Finding polynomial zeroes on a multi-mesh of trees (mmt), In:350

Proc of the 2nd int conference on information technology (1999) 202–206.

[35] NVIDIA, NVIDIA CUDA C Programming Guide, Vol. 7 of 001, PG, 2015.

19

	Root finding problem
	Aberth method
	Polynomials Initialization
	Vector Z(0) Initialization
	Iterative Function Hi
	Convergence condition

	Amelioration of Aberth method
	The implementation of simultaneous methods in a parallel computer
	A parallel implementation of Aberth method
	Background on the GPU architecture
	Background on the CUDA Programming Model
	 The implementation of Aberth method on GPU
	A sequential Aberth algorithm
	Parallelize the steps on GPU

	Experimental study
	Definition of the polynomial used
	The study condition
	Comparative study

