\begin{thebibliography}{10} \expandafter\ifx\csname url\endcsname\relax \def\url#1{\texttt{#1}}\fi \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi \expandafter\ifx\csname href\endcsname\relax \def\href#1#2{#2} \def\path#1{#1}\fi \bibitem{Weierstrass03} K.~Weierstrass, Neuer beweis des satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen, Ges. Werke 3 (1903) 251--269. \bibitem{Ilie50} L.~Ilieff, On the approximations of newton, Annual Sofia Univ~(46) (1950) 167--171. \newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X} {\path{doi:10.1016/0003-4916(63)90068-X}}. \bibitem{Docev62} K.~Docev, An alternative method of newton for simultaneous calculation of all the roots of a given algebraic equation, Phys. Math. J~(5) (1962) 136--139. \bibitem{Durand60} E.~Durand, Solution numerique des equations algebriques, vol. 1, equations du type f(x)=0, racines d'une polynome Vol.1. \bibitem{Kerner66} I.~Kerner, Ein gesamtschritteverfahren zur berechnung der nullstellen von polynomen~(8) (1966) 290--294. \bibitem{Borch-Supan63} W.~Borch-Supan, A posteriori error for the zeros of polynomials~(5) (1963) 380--398. \bibitem{Ehrlich67} L.~Ehrlich, A modified newton method for polynomials, Comm. Ass. Comput. Mach.~(10) (1967) 107--108. \bibitem{Aberth73} O.~Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Mathematics of Computation 27~(122) (1973) 339--344. \newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X} {\path{doi:10.1016/0003-4916(63)90068-X}}. \bibitem{Loizon83} G.~Loizon, Higher-order iteration functions for simultaneously approximating polynomial zeros, Intern. J. Computer Math~(14) (1983) 45--58. \bibitem{Freeman89} T.~Freeman, Calculating polynomial zeros on a local memory parallel computer, Parallel Computing~(12) (1989) 351--358. \bibitem{Freemanall90} T.~Freeman, R.~Brankin, Asynchronous polynomial zero-finding algorithms, Parallel Computing~(17) (1990) 673--681. \bibitem{Raphaelall01} R.~Couturier, F.~Spetiri, Extraction de racines dans des polynômes creux de degrées élevés.rsrcp (réseaux et systèmes répartis, calculateurs parallèles), Algorithmes itératifs paralléles et distribués 1~(13) (1990) 67--81. \bibitem{CUDA10} Compute Unified Device Architecture Programming Guide Version 3.0. \bibitem{Kahinall14} K.~Ghidouche, R.~Couturie, A.~Sider, parallel implementation of the durand-kerner algorithm for polynomial root-finding on gpu, IEEE. Conf. on advanced Networking, Distributed Systems and Applications (2014) 53--57. \bibitem{Bini96} D.~Bini, Numerical computation of polynomial zeros by means of aberth s method, Numerical Algorithms 13~(4) (1996) 179--200. \bibitem{Ostrowski41} A.~Ostrowski, On a theorem by j.l. walsh concerning the moduli of roots of algebraic equations,bull. a.m.s., Algorithmes itératifs paralléles et distribués 1~(47) (1941) 742--746. \bibitem{Karimall98} K.~Rhofir, F.~Spies, J.-C. Miellou, Perfectionnements de la méthode asynchrone de durand-kerner pour les polynômes complexes, Calculateurs Parallèles 10~(4) (1998) 449--458. \bibitem{Mirankar68} W.~Mirankar, Parallel methods for approximating the roots of a function, IBM Res Dev 30 (1968) 297--301. \bibitem{Mirankar71} W.~Mirankar, A survey of parallelism in numerical analysis, SIAM Rev (1971) 524--547. \bibitem{Schedler72} G.~Schedler, Parallel iteration methods in complexity of computer communications, Commun ACM (1967) 286--290. \bibitem{Winogard72} S.~Winogard, Parallel iteration methods in complexity of computer communications, Plenum, New York. \bibitem{Benall68} M.~Ben-Or, E.~Feig, D.~Kozzen, P.~Tiwary, A fast parallel algorithm for determining all roots of a polynomial with real roots, Int: Proc of ACM (1968) 340--349. \bibitem{Jana06} P.~Jana, Polynomial interpolation and polynomial root finding on otis-mesh, Parallel Comput 32~(3) (2006) 301--312. \bibitem{Janall99} P.~Jana, B.~Sinha, R.~D. Gupta, Efficient parallel algorithms for finding polynomial zeroes, Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India 15~(3) (1999) 189--196. \bibitem{Riceall06} T.~Rice, L.~Jamieson, A highly parallel algorithm for root extraction, IEEE Trans Comp 38~(3) (2006) 443--449. \bibitem{Azad07} H.~Azad, The performance of synchronous parallel polynomial root extraction on a ring multicomputer, Clust Comput 2~(10) (2007) 167--174. \bibitem{Gemignani07} L.~Gemignani, Structured matrix methods for polynomial root finding., n: Proc of the 2007 Intl symposium on symbolic and algebraic computation (2007) 175--180. \bibitem{Kalantari08} B.~Kalantari, Polynomial root finding and polynomiography., World Scientifict,New Jersey. \bibitem{Skachek08} V.~Skachek, Structured matrix methods for polynomial root finding., n: Proc of the 2007 Intl symposium on symbolic and algebraic computation (2008) 175--180. \bibitem{Zhancall08} X.~Zhanc, Z.~M.~Wan, A constrained learning algorithm for finding multiple real roots of polynomial, In: Proc of the 2008 intl symposium on computational intelligence and design (2008) 38--41. \bibitem{Zhuall08} W.~Zhu, w.~Zeng, D.~Lin, an adaptive algorithm finding multiple roots of polynomials, Lect Notes Comput Sci~(5262) (2008) 674--681. \bibitem{Bini04} D.~Bini, L.~Gemignani, Inverse power and durand kerner iterations for univariate polynomial root finding, Comput Math Appl~(47) (2004) 447--459. \bibitem{Cosnard90} M.~Cosnard, P.~Fraigniaud, Finding the roots of a polynomial on an mimd multicomputer, Parallel Comput 15~(3) (1990) 75--85. \bibitem{Jana99} P.~Jana, Finding polynomial zeroes on a multi-mesh of trees (mmt), In: Proc of the 2nd int conference on information technology (1999) 202--206. \bibitem{NVIDIA10} NVIDIA, NVIDIA CUDA C Programming Guide, Vol.~7 of 001, PG, 2015. \end{thebibliography}