
1 Root finding problem

we consider a polynomial of degree n having coefficients in the complex C
and zeros αi, i=1,...,n.

p(x) =
∑

aix
i = an

∏
(x− αi), a0an 6= 0,

the root finding problem consist to find all n root of p(x). the problem
of finding a root is equivalent to the problem of finding a fixed-point. To see
this consider the fixed-point problem of finding the n-dimensional vector x
such that

x = g(x).

where g : Cn −→ Cn. Note that we can easily rewrite this fixed-point
problem as a root-finding problem by setting f(x) = x − g(x) and likewise
we can recast the root-finding problem into a fixed-point problem by setting

g(x) = f(x)− x

Often it will not be possible to solve such nonlinear equation root-finding
problems analytically. When this occurs we turn to numerical methods to
approximate the solution. Generally speaking, algorithms for solving prob-
lems numerically can be divided into two main groups: direct methods and
iterative methods.
Direct methods exist only for n 6 4,solved in closed form by G. Cardano in
the mid-16th century. However, N.H. Abel in the early 19th century showed
that polynomials of degree five or more could not be solved by directs meth-
ods. Since then researchers have concentrated on numerical (iterative) meth-
ods such as the famous Newton s method, Bernoulli s method of the 18th,
and Graeffe s. With the advent of electronic computers, different methods
has been developed such as the Jenkins-Traub method, Larkin s method,
Muller s method, and several methods for simultaneous approximation of
all the roots, starting with the Durand-Kerner method:

Zi = Zi − P (Zi)Q
i6=j(zi−zj)

This formula is mentioned for the first time from Weiestrass [12] as part
of the fundamental theorem of Algebra and is rediscovered from Ilieff [2],
Docev [3], Durand [4], Kerner [5]. Another method discovered from Borsch-
Supan [6] and also described and brought in the following form from Ehrlich
[7] and Aberth [8]

Zi = Zi − 1
P ′(Zi)

P (Zi)
−Pi6=j(zi−zj)

1

Aberth, Ehrlich and Farmer-Loizou [10] have proved that the above
method has cubic order of convergence for simple roots.

Iterative methods raise several problem when implemented e.g. specific
sizes of numbers must be used to deal with this difficulty.Moreover,the con-
vergence time of iterative methods drastically increase like the degrees of
high polynomials. The parallelization of these algorithms will improve the
convergence time.

Many authors have treated the problem of parallelization of simultane-
ous methods. Freeman [13] has tested the DK method, EA method and an-
other method of the fourth order proposed from Farmer and Loizou [10],on
a 8- processor linear chain, for polynomial of degree up to 8. The third
method often diverges, but the first two methods have speed-up 5.5 (speed-
up=(Time on one processor)/(Time on p processors)). Later Freeman and
Bane [14] consider asynchronous algorithms, in which each processor con-
tinues to update its approximations even although the latest values of other
zi((k)) have not received from the other processors, in difference with the
synchronous version where it would wait. in [15]proposed two methods of
parallelization for architecture with shared memory and distributed mem-
ory,it able to compute the root of polynomial degree 10000 on 430 s with
only 8 pc and 2 communications per iteration. Compare to the sequential
it take 3300 s to obtain the same results.

After this few works discuses this problem until the apparition of the
Compute Unified Device Architecture (CUDA) [19],a parallel computing
platform and a programming model invented by NVIDIA. the computing
ability of GPU has exceeded the counterpart of CPU. It is a waste of resource
to be just a graphics card for GPU. CUDA adopts a totally new computing
architecture to use the hardware resources provided by GPU in order to
offer a stronger computing ability to the massive data computing.

Indeed [16]proposed the implementation of the Durand-Kerner method
on GPU (Graphics Processing Unit). The main result prove that a parallel
implementation is 10 times as fast as the sequential implementation on a
single CPU for high degree polynomials that is greater than about 48000.

The mean part of our work is to implement the Aberth method on GPU
and compare it with the Durand Kerner implementation.................To be
continued..................

References

[1] O. Aberth, Iteration Methods for Finding all Zeros of a Polynomial Si-
multaneously, Math. Comput. 27, 122 (1973) 339344.

[2] Ilieff, L. (1948-50), On the approximations of Newton, Annual Sofia
Univ. 46, 167-171.

2

[3] Docev, K. (1962), An alternative method of Newton for simultaneous
calculation of all the roots of a given algebraic equation, Phys. Math. J.,
Bulg. Acad. Sci. 5, 136-139.

[4] Durand, E. (1960), Solution Numerique des Equations Algebriques, Vol.
1, Equations du Type F(x)=0, Racines d’une Polynome. Masson, Paris.

[4] Aberth, O. (1973), Iterative methods for finding all zeros of a polynomial
simultaneously, Math. Comp. 27, 339-344.

[5] Kerner, I.O. (1966), Ein Gesamtschritteverfahren zur Berechnung der
Nullstellen von Polynomen, Numer. Math. 8, 290-294.

[6] Borch-Supan, W. (1963), A posteriori error for the zeros of polynomials,
Numer. Math. 5, 380-398.

[7] Ehrlich, L. W. (1967), A modified Newton method for polynomials,
Comm. Ass. Comput. Mach. 10, 107-108.

[10] Loizon, G. (1983), Higher-order iteration functions for simultaneously
approximating polynomial zeros, Intern. J. Computer Math. 14, 45-58.

[11] E. Durand, Solutions num´eriques des ´equations alg´ebriques, Tome
1: Equations du type F(X) = 0; Racines dun polynome, Masson, Paris
1960.

[12] Weierstrass, K. (1903), Neuer Beweis des Satzes, dass jede ganze ratio-
nale function einer veranderlichen dagestellt werden kann als ein product
aus linearen functionen derselben veranderlichen, Ges. Werke 3, 251-269.

[13] Freeman, T. L. (1989), Calculating polynomial zeros on a local memory
parallel computer, Parallel Computing 12, 351-358.

[14] Freeman, T. L., Brankin, R. K. (1990), Asynchronous polynomial zero-
finding algorithms, Parallel Computing 17, 673-681.

[15] Raphaël,C. François,S. (2001), Extraction de racines dans des
polynômes creux de degré élevé. RSRCP (Réseaux et Systèmes Répartis,
Calculateurs Parallèles), Numéro thématique : Algorithmes itératifs par-
allèles et distribués, 13(1):67–81.

[16] Kahina, G. Raphaël, C. Abderrahmane, S. A parallel implementation
of the Durand-Kerner algorithm for polynomial root-finding on GPU.
In INDS 2014, Int. Conf. on advanced Networking, Distributed Systems
and Applications, Bejaia, Algeria, pages 53–57, June 2014. IEEE

3

