]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correct
[kahina_paper1.git] / paper.tex
index 96e01fd054a410f2d09c9958b0154fcd26892f22..bfbbc31349c304500abb364668186d5df10ad28a 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -82,7 +82,7 @@
 
 \begin{abstract}
 Polynomials are mathematical algebraic structures that play a great
 
 \begin{abstract}
 Polynomials are mathematical algebraic structures that play a great
-role in science and engineering. Finding roots of high degree
+role in science and engineering. Finding the roots of high degree
 polynomials is computationally demanding. In this paper, we present
 the results of a parallel implementation of the Ehrlich-Aberth
 algorithm for the root finding problem for high degree polynomials on
 polynomials is computationally demanding. In this paper, we present
 the results of a parallel implementation of the Ehrlich-Aberth
 algorithm for the root finding problem for high degree polynomials on
@@ -101,15 +101,15 @@ Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
 
 \linenumbers
 
 
 \linenumbers
 
-\section{The problem of finding roots of a polynomial}
-Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
+\section{The problem of finding the roots of a polynomial}
+Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomena and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
 %%\begin{center}
 \begin{equation}
      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
 \end{equation}
 %%\end{center}
 
 %%\begin{center}
 \begin{equation}
      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
 \end{equation}
 %%\end{center}
 
-The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
+The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
 \begin{equation}
      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
 \end{equation}
 \begin{equation}
      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
 \end{equation}
@@ -127,22 +127,22 @@ root-finding problem into a fixed-point problem by setting :
 $g(x)= f(x)-x$.
 \end{center}
 
 $g(x)= f(x)-x$.
 \end{center}
 
-Often it is not be possible to solve such nonlinear equation
-root-finding problems analytically. When this occurs we turn to
+It is often impossible to solve such nonlinear equation
+root-finding problems analytically. When this occurs, we turn to
 numerical methods to approximate the solution. 
 Generally speaking, algorithms for solving problems can be divided into
 two main groups: direct methods and iterative methods.
 numerical methods to approximate the solution. 
 Generally speaking, algorithms for solving problems can be divided into
 two main groups: direct methods and iterative methods.
-\\
-Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
-in the mid-16th century. However, N. H. Abel in the early 19th
-century showed that polynomials of degree five or more could not
+
+Direct methods only exist for $n \leq 4$, solved in closed form
+by G. Cardano in the mid-16th century. However, N. H. Abel in the early 19th
+century proved that polynomials of degree five or more could not
 be solved by  direct methods. Since then, mathematicians have
 focussed on numerical (iterative) methods such as the famous
 be solved by  direct methods. Since then, mathematicians have
 focussed on numerical (iterative) methods such as the famous
-Newton method, the Bernoulli method of the 18th, and the Graeffe method.
+Newton method, the Bernoulli method of the 18th century, and the Graeffe method.
 
 Later on, with the advent of electronic computers, other methods have
 been developed such as the Jenkins-Traub method, the Larkin method,
 
 Later on, with the advent of electronic computers, other methods have
 been developed such as the Jenkins-Traub method, the Larkin method,
-the Muller method, and several methods for simultaneous
+the Muller method, and several other methods for the simultaneous
 approximation of all the roots, starting with the Durand-Kerner (DK)
 method:
 %%\begin{center}
 approximation of all the roots, starting with the Durand-Kerner (DK)
 method:
 %%\begin{center}
@@ -176,23 +176,22 @@ Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
 
 
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
 
 
-Iterative methods raise several problem when implemented e.g.
-specific sizes of numbers must be used to deal with this
-difficulty. Moreover, the convergence time of iterative methods
+Moreover, the convergence times of iterative methods
 drastically increases like the degrees of high polynomials. It is expected that the
 drastically increases like the degrees of high polynomials. It is expected that the
-parallelization of these algorithms will improve the convergence
-time.
+parallelization of these algorithms will reduce the execution times.
 
 Many authors have dealt with the parallelization of
 simultaneous methods, i.e. that find all the zeros simultaneously. 
 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
 
 Many authors have dealt with the parallelization of
 simultaneous methods, i.e. that find all the zeros simultaneously. 
 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
-by Farmer and Loizou~\cite{Loizou83}, on a 8-processor linear
-chain, for polynomials of degree up to 8. The third method often
-diverges, but the first two methods have speed-up equal to 5.5. Later,
+by Farmer and Loizou~\cite{Loizou83}, on an 8-processor linear
+chain, for polynomials of degree 8. The third method often
+diverges, but the first two methods have speed-ups equal to 5.5. Later,
 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
 algorithms, in which each processor continues to update its
 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
 algorithms, in which each processor continues to update its
-approximations even though the latest values of other $z_i^{k}$
-have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
+approximations even though the latest values of other roots
+have not yet been received from the other processors.  In contrast,
+synchronous algorithms   wait the computation of all roots at a given
+iterations  before making a new one.
 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
 a shared memory architecture and for distributed memory one. They were able to
 compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
 a shared memory architecture and for distributed memory one. They were able to
 compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
@@ -345,14 +344,12 @@ propose to use the logarithm and the exponential of a complex in order to comput
 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
-Applying this solution for the Ehrlich-Aberth method we obtain the
-iteration function with exponential and logarithm:
+Applying this solution for the iteration function Eq.~\ref{Eq:Hi} of Ehrlich-Aberth method, we obtain the iteration function with exponential and logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
 EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
 EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
-p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
-\left(1-Q(z^{k}_{i})\right)\right),
+p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right),
 \end{equation}
 
 where:
 \end{equation}
 
 where:
@@ -366,7 +363,7 @@ Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as :
 \begin{equation}
 \label{R.EL}
 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as :
 \begin{equation}
 \label{R.EL}
-R = exp(log(DBL_MAX)/(2*n) );
+R = exp(log(DBL\_MAX)/(2*n) );
 \end{equation}
 
 
 \end{equation}
 
 
@@ -409,7 +406,7 @@ other processors at the end of each iteration (synchronous). Therefore they
 cause a high degree of memory conflict. Recently the author
 in~\cite{Mirankar71} proposed two versions of parallel algorithm
 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
 cause a high degree of memory conflict. Recently the author
 in~\cite{Mirankar71} proposed two versions of parallel algorithm
 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
-Optoelectronic Transpose Interconnection System (OTIS).The
+Optoelectronic Transpose Interconnection System (OTIS). The
 algorithms are mapped on an OTIS-2D torus using $N$ processors. This
 solution needs $N$ processors to compute $N$ roots, which is not
 practical for solving polynomials with large degrees.
 algorithms are mapped on an OTIS-2D torus using $N$ processors. This
 solution needs $N$ processors to compute $N$ roots, which is not
 practical for solving polynomials with large degrees.
@@ -542,7 +539,7 @@ polynomials of 48,000.
 \subsection{Parallel implementation with CUDA }
 
 In order to implement the Ehrlich-Aberth method in CUDA, it is
 \subsection{Parallel implementation with CUDA }
 
 In order to implement the Ehrlich-Aberth method in CUDA, it is
-possible to use the Jacobi scheme or the Gauss Seidel one.  With the
+possible to use the Jacobi scheme or the Gauss-Seidel one.  With the
 Jacobi iteration, at iteration $k+1$ we need all the previous values
 $z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
 
 Jacobi iteration, at iteration $k+1$ we need all the previous values
 $z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
 
@@ -560,7 +557,7 @@ With the Gauss-Seidel iteration, we have:
 \begin{equation}
 \label{eq:Aberth-H-GS}
 EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
 \begin{equation}
 \label{eq:Aberth-H-GS}
 EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
-{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=i+1}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
 \end{equation}
 
 Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
 \end{equation}
 
 Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
@@ -582,7 +579,7 @@ quickly because, just as any Jacobi algorithm (for solving linear systems of equ
 
 %In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
 
 
 %In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
 
-Algorithm~\ref{alg2-cuda} shows sketch of the Ehrlich-Aberth algorithm using CUDA.
+Algorithm~\ref{alg2-cuda} shows sketch of the Ehrlich-Aberth method using CUDA.
 
 \begin{enumerate}
 \begin{algorithm}[H]
 
 \begin{enumerate}
 \begin{algorithm}[H]
@@ -590,7 +587,7 @@ Algorithm~\ref{alg2-cuda} shows sketch of the Ehrlich-Aberth algorithm using CUD
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
-\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
 
 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
 
 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}