-in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying exp.log solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees .
+Figure~\ref{fig:03} shows a comparison between the execution time of
+the Ehrlich-Aberth algorithm using the exp.log solution and the
+execution time of the Ehrlich-Aberth algorithm without this solution,
+with full and sparse polynomials degrees. We can see that the
+execution times for both algorithms are the same with full polynomials
+degrees less than 4000 and sparse polynomials less than 150,000. We
+also clearly show that the classical version (without log.exp) of
+Ehrlich-Aberth algorithm do not converge after these degree with
+sparse and full polynomials. In counterpart, the new version of
+Ehrlich-Aberth algorithm with the log.exp solution can solve very
+high degree polynomials.
+
+%in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees .
+