+ \section{Conclusion and perspectives}
+\label{sec7}
+In this paper we have presented the parallel implementation
+Ehrlich-Aberth method on GPU for the problem of finding roots
+polynomial. Moreover, we have improved the classical Ehrlich-Aberth
+method which suffers from overflow problems, the exp-log solution
+applied to the iterative function allows to solve high degree
+polynomials.
+
+We have performed many experiments with the Ehrlich-Aberth method in
+GPU. These experiments highlight that this method is more efficient in
+GPU than all the other implementations. The improvement with
+the exponential logarithm solution allows us to solve sparse and full
+high degree polynomials up to 1,000,000 degree. Hence, it may be
+possible to consider using polynomial root finding methods in other
+numerical applications on GPU.
+
+
+In future works, we plan to investigate the possibility of using
+several multiple GPUs simultaneously, either with a multi-GPU machine or
+with a cluster of GPUs. It may also be interesting to study the
+implementation of other root finding polynomial methods on GPU.