-solution need N processors to compute N roots, that it is not
-practical (is not suitable to compute large polynomial's degrees).
-Until then, the related works are not able to compute the root of
-the large polynomial's degrees (higher then 1000) and with small
-time.
-
- Finding polynomial roots rapidly and accurately it is our
-objective, with the apparition of the CUDA(Compute Unified Device
-Architecture), finding the roots of polynomials becomes rewarding
-and very interesting, CUDA adopts a totally new computing
-architecture to use the hardware resources provided by GPU in
-order to offer a stronger computing ability to the massive data
-computing. In~\cite{Kahinall14} we proposed the first implantation
-of the root finding polynomials method on GPU (Graphics Processing
-Unit),which is the Durand-Kerner method. The main result prove
-that a parallel implementation is 10 times as fast as the
+solution needs N processors to compute N roots, which is not
+practical for solving polynomials with large degrees.
+Until very recently, the literature doen not mention implementations able to compute the roots of
+large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work.
+With the advent of CUDA (Compute Unified Device
+Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time.
+In~\cite{Kahinall14} we already proposed the first implementation
+of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
+that a parallel CUDA implementation is 10 times as fast as the