of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
that a parallel CUDA implementation is 10 times as fast as the
sequential implementation on a single CPU for high degree
-polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
-GPUs, which details are discussed in the sequel.
+polynomials of 48000.
+%In this paper we present a parallel implementation of Ehrlich-Aberth
+%method on GPUs for sparse and full polynomials with high degree (up
+%to $1,000,000$).
\section {A CUDA parallel Ehrlich-Aberth method}
In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU
-for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
+for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
\subsection{Background on the GPU architecture}
A GPU is viewed as an accelerator for the data-parallel and