]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ Mybibfile
[kahina_paper1.git] / paper.tex
index f66bf99b07b42a69c4fbb1837ed1fd5c8e106b85..4213238dc15bba747cab568e22b4b4baecab2c2e 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -232,7 +232,8 @@ topic.
 \section{The Sequential Ehrlich-Aberth method}
 \label{sec1}
 A cubically convergent iteration method for finding zeros of
 \section{The Sequential Ehrlich-Aberth method}
 \label{sec1}
 A cubically convergent iteration method for finding zeros of
-polynomials was proposed by O. Aberth~\cite{Aberth73}. In the fellowing we present the main stages of the running of the Ehrlich-Aberth method.
+polynomials was proposed by O. Aberth~\cite{Aberth73}. In the
+following we present the main stages of our implementation the Ehrlich-Aberth method.
 %The Aberth method is a purely algebraic derivation. 
 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
 
 %The Aberth method is a purely algebraic derivation. 
 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
 
@@ -268,7 +269,7 @@ The initialization of a polynomial p(z) is done by setting each of the $n$ compl
 
 \subsection{Vector $z^{(0)}$ Initialization}
 
 
 \subsection{Vector $z^{(0)}$ Initialization}
 
-Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
+As for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
 The initial guess is very important since the number of steps needed by the iterative method to reach
 a given approximation strongly depends on it.
 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
 The initial guess is very important since the number of steps needed by the iterative method to reach
 a given approximation strongly depends on it.
 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
@@ -302,20 +303,23 @@ Here we give a second form of the iterative function used by Ehrlich-Aberth meth
 EA2: z^{k+1}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
 \end{equation}
 EA2: z^{k+1}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
 \end{equation}
-we notice that the function iterative in Eq.~\ref{Eq:Hi} it the same those presented in Eq.~\ref{Eq:EA}, but we prefer used the last one seen the advantage of its use to improve the Ehrlich-Aberth method and resolve very high degrees polynomials. More detail in the section ~\ref{sec2}.    
+It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
+but we prefer the latter one because we can use it to improve the
+Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
+details are given in Section ~\ref{sec2}.
 \subsection{Convergence Condition}
 \subsection{Convergence Condition}
-The convergence condition determines the termination of the algorithm. It consists in stopping from running the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
-\forall i \in
-[1,n];\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}<\xi
+\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
 \end{equation}
 
 
 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
 \label{sec2}
 \end{equation}
 
 
 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
 \label{sec2}
-The Ehrlich-Aberth method implementation suffers of overflow problems. This
+With high degree polynomial, the Ehrlich-Aberth method implementation,
+as well as the Durand-Kerner implement, suffers from overflow problems. This
 situation occurs, for instance, in the case where a polynomial
 having positive coefficients and a large degree is computed at a
 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
 situation occurs, for instance, in the case where a polynomial
 having positive coefficients and a large degree is computed at a
 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
@@ -343,7 +347,7 @@ Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defex
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
 Applying this solution for the Ehrlich-Aberth method we obtain the
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
 Applying this solution for the Ehrlich-Aberth method we obtain the
-iteration function with logarithm:
+iteration function with exponential and logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
@@ -489,32 +493,37 @@ read-only caches.
 
 \subsection{A sequential Ehrlich-Aberth algorithm}
 The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
 
 \subsection{A sequential Ehrlich-Aberth algorithm}
 The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
-  
+%\LinesNumbered  
 \begin{algorithm}[H]
 \label{alg1-seq}
 \begin{algorithm}[H]
 \label{alg1-seq}
-%\LinesNumbered
+
 \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
 
 \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
 
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold),P(Polynomial to solve)}
-\KwOut {Z(The solution root's vector)}
+\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold), P(Polynomial to solve),$\Delta z_{max}$ (maximum value of stop condition),k (number of iteration),n(Polynomial's degrees)}
+\KwOut {Z (The solution root's vector),ZPrec (the previous solution root's vector)}
 
 \BlankLine
 
 Initialization of the coefficients of the polynomial to solve\;
 Initialization of the solution vector $Z^{0}$\;
 
 \BlankLine
 
 Initialization of the coefficients of the polynomial to solve\;
 Initialization of the solution vector $Z^{0}$\;
+$\Delta z_{max}=0$\;
+ k=0\;
 
 
-\While {$\Delta z_{max}\succ \epsilon$}{
+\While {$\Delta z_{max} > \varepsilon$}{
  Let $\Delta z_{max}=0$\;
 \For{$j \gets 0 $ \KwTo $n$}{
  Let $\Delta z_{max}=0$\;
 \For{$j \gets 0 $ \KwTo $n$}{
-$ZPrec\left[j\right]=Z\left[j\right]$\;
-$Z\left[j\right]=H\left(j,Z\right)$\;
+$ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
+
+$Z\left[j\right]=H\left(j,Z\right)$;//update Z with the iterative function.\
 }
 }
+k=k+1\;
 
 \For{$i \gets 0 $ \KwTo $n-1$}{
 
 \For{$i \gets 0 $ \KwTo $n-1$}{
-$c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
+$c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
 \If{$c > \Delta z_{max}$ }{
 $\Delta z_{max}$=c\;}
 }
 \If{$c > \Delta z_{max}$ }{
 $\Delta z_{max}$=c\;}
 }
+
 }
 \end{algorithm}
 
 }
 \end{algorithm}
 
@@ -551,8 +560,7 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth algorithm using C
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
-tolerance threshold),P(Polynomial to solve)}
+\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold), P(Polynomial to solve), $\Delta z_{max}$ (maximum value of stop condition)}
 
 \KwOut {Z(The solution root's vector)}
 
 
 \KwOut {Z(The solution root's vector)}
 
@@ -561,12 +569,14 @@ tolerance threshold),P(Polynomial to solve)}
 Initialization of the coeffcients of the polynomial to solve\;
 Initialization of the solution vector $Z^{0}$\;
 Allocate and copy initial data to the GPU global memory\;
 Initialization of the coeffcients of the polynomial to solve\;
 Initialization of the solution vector $Z^{0}$\;
 Allocate and copy initial data to the GPU global memory\;
-
+k=0\;
 \While {$\Delta z_{max}\succ \epsilon$}{
  Let $\Delta z_{max}=0$\;
 \While {$\Delta z_{max}\succ \epsilon$}{
  Let $\Delta z_{max}=0$\;
-$ kernel\_save(d\_z^{k-1})$\;
-$ kernel\_update(d\_z^{k})$\;
-$kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
+$ kernel\_save(d\_Z^{k-1})$\;
+k=k+1\;
+$ kernel\_update(d\_Z^{k})$\;
+$kernel\_testConverge(\Delta z_{max},d\_Z^{k},d\_Z^{k-1})$\;
+
 }
 \end{algorithm}
 ~\\ 
 }
 \end{algorithm}
 ~\\