\section{The Sequential Ehrlich-Aberth method}
\label{sec1}
A cubically convergent iteration method for finding zeros of
-polynomials was proposed by O. Aberth~\cite{Aberth73}. In the fellowing we present the main stages of the running of the Ehrlich-Aberth method.
+polynomials was proposed by O. Aberth~\cite{Aberth73}. In the
+following we present the main stages of our implementation the Ehrlich-Aberth method.
%The Aberth method is a purely algebraic derivation.
%To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors
\subsection{Vector $z^{(0)}$ Initialization}
-Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
+As for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
The initial guess is very important since the number of steps needed by the iterative method to reach
a given approximation strongly depends on it.
In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
EA2: z^{k+1}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
\end{equation}
-we notice that the function iterative in Eq.~\ref{Eq:Hi} it the same those presented in Eq.~\ref{Eq:EA}, but we prefer used the last one seen the advantage of its use to improve the Ehrlich-Aberth method and resolve very high degrees polynomials. More detail in the section ~\ref{sec2}.
+It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
+but we prefer the latter one because we can use it to improve the
+Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
+details are given in Section ~\ref{sec2}.
\subsection{Convergence Condition}
-The convergence condition determines the termination of the algorithm. It consists in stopping from running the iterative function when the roots are sufficiently stable. We consider that the method converges sufficiently when:
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function when the roots are sufficiently stable. We consider that the method converges sufficiently when:
\begin{equation}
\label{eq:Aberth-Conv-Cond}
-\forall i \in
-[1,n];\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}<\xi
+\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
\end{equation}
\section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
\label{sec2}
-The Ehrlich-Aberth method implementation suffers of overflow problems. This
+With high degree polynomial, the Ehrlich-Aberth method implementation,
+as well as the Durand-Kerner implement, suffers from overflow problems. This
situation occurs, for instance, in the case where a polynomial
having positive coefficients and a large degree is computed at a
point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
Applying this solution for the Ehrlich-Aberth method we obtain the
-iteration function with logarithm:
+iteration function with exponential and logarithm:
%%$$ \exp \bigl( \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
\begin{equation}
\label{Log_H2}
polynomial. Several works on different methods and issues of root
finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
them~\cite{Bini04}. These two methods have been extensively
-studied for parallelization due to their intrinsics, i.e. the
+studied for parallelization due to their intrinsics parallelism, i.e. the
computations involved in both methods has some inherent
parallelism that can be suitably exploited by SIMD machines.
Moreover, they have fast rate of convergence (quadratic for the
algorithms are mapped on an OTIS-2D torus using N processors. This
solution needs N processors to compute N roots, which is not
practical for solving polynomials with large degrees.
-Until very recently, the literature doen not mention implementations able to compute the roots of
-large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work.
+%Until very recently, the literature did not mention implementations
+%able to compute the roots of large degree polynomials (higher then
+%1000) and within small or at least tractable times.
+
+Finding polynomial roots rapidly and accurately is the main objective of our work.
With the advent of CUDA (Compute Unified Device
Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time.
In~\cite{Kahinall14} we already proposed the first implementation
of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
that a parallel CUDA implementation is 10 times as fast as the
sequential implementation on a single CPU for high degree
-polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
-GPUs, which details are discussed in the sequel.
+polynomials of 48000.
+%In this paper we present a parallel implementation of Ehrlich-Aberth
+%method on GPUs for sparse and full polynomials with high degree (up
+%to $1,000,000$).
\section {A CUDA parallel Ehrlich-Aberth method}
In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU
-for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
+for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
\subsection{Background on the GPU architecture}
A GPU is viewed as an accelerator for the data-parallel and
\subsection{A sequential Ehrlich-Aberth algorithm}
The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
-
+%\LinesNumbered
\begin{algorithm}[H]
\label{alg1-seq}
-%\LinesNumbered
+
\caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold),P(Polynomial to solve)}
-\KwOut {Z(The solution root's vector)}
+\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold), P(Polynomial to solve),$\Delta z_{max}$ (maximum value of stop condition),k (number of iteration),n(Polynomial's degrees)}
+\KwOut {Z (The solution root's vector),ZPrec (the previous solution root's vector)}
\BlankLine
Initialization of the coefficients of the polynomial to solve\;
Initialization of the solution vector $Z^{0}$\;
+$\Delta z_{max}=0$\;
+ k=0\;
-\While {$\Delta z_{max}\succ \epsilon$}{
+\While {$\Delta z_{max} > \varepsilon$}{
Let $\Delta z_{max}=0$\;
\For{$j \gets 0 $ \KwTo $n$}{
-$ZPrec\left[j\right]=Z\left[j\right]$\;
-$Z\left[j\right]=H\left(j,Z\right)$\;
+$ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
+
+$Z\left[j\right]=H\left(j,Z\right)$;//update Z with the iterative function.\
}
+k=k+1\;
\For{$i \gets 0 $ \KwTo $n-1$}{
-$c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
+$c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
\If{$c > \Delta z_{max}$ }{
$\Delta z_{max}$=c\;}
}
+
}
\end{algorithm}
%\LinesNumbered
\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
-tolerance threshold),P(Polynomial to solve)}
+\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold), P(Polynomial to solve), $\Delta z_{max}$ (maximum value of stop condition)}
\KwOut {Z(The solution root's vector)}
Initialization of the coeffcients of the polynomial to solve\;
Initialization of the solution vector $Z^{0}$\;
Allocate and copy initial data to the GPU global memory\;
-
+k=0\;
\While {$\Delta z_{max}\succ \epsilon$}{
Let $\Delta z_{max}=0$\;
-$ kernel\_save(d\_z^{k-1})$\;
-$ kernel\_update(d\_z^{k})$\;
-$kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
+$ kernel\_save(d\_Z^{k-1})$\;
+k=k+1\;
+$ kernel\_update(d\_Z^{k})$\;
+$kernel\_testConverge(\Delta z_{max},d\_Z^{k},d\_Z^{k-1})$\;
+
}
\end{algorithm}
~\\