-(with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as in Eq.~\ref{R.EL}. \KG{experimentally it is difficult to solve the high degree polynomial with the classical Ehrlich-Aberth method, so if the root are under to the unit circle ($R$)the kernel \textit{update} is called in the EA.EL function Eq.~\ref{Log_H2} (with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}) line 3, to put into account the limited of grander floating manipulated by processors and compute more roots}.
-\KG{} We notice that we used \verb= cuDoubleComplex= to exploit the complex number in CUDA, and the functions of the CUBLAS library to implement some vector operations on the GPU. We use the following functions:
+(with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as in Eq.~\ref{R.EL}. \KG{experimentally it is difficult to solve the high degree polynomial with the classical Ehrlich-Aberth method, so if the root are under to the unit circle ($R$)the kernel \textit{update} is called in the EA.EL function Eq.~\ref{Log_H2} (with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}) line 3, to put into account the limited of grander floating manipulated by processors and compute more roots}. We notice that we used \verb= cuDoubleComplex= to exploit the complex number in CUDA, and the functions of the CUBLAS library to implement some vector operations on the GPU. We use the following functions: