]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
la figure 3 en noir et blanc....
[kahina_paper1.git] / paper.tex
index d9d72c31c05b570457dfed406a93e3964c5efa97..e3dde6e9caa09e9e64e50476180d0bdb7dd8f12c 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -115,14 +115,14 @@ The root finding problem consists in finding the values of all the $n$ values of
 \end{equation}
 
 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
-vector $x$ such that
+vector $x$ such that :
 \begin{center}
 $x=g(x)$
 \end{center}
 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
 rewrite this fixed-point problem as a root-finding problem by
 setting $f(x) = x-g(x)$ and likewise we can recast the
-root-finding problem into a fixed-point problem by setting
+root-finding problem into a fixed-point problem by setting :
 \begin{center}
 $g(x)= f(x)-x$.
 \end{center}
@@ -136,7 +136,7 @@ two main groups: direct methods and iterative methods.
 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
 in the mid-16th century. However, N. H. Abel in the early 19th
 century showed that polynomials of degree five or more could not
-be solved by  direct methods. Since then, mathmathicians have
+be solved by  direct methods. Since then, mathematicians have
 focussed on numerical (iterative) methods such as the famous
 Newton method, the Bernoulli method of the 18th, and the Graeffe method.
 
@@ -147,10 +147,11 @@ approximation of all the roots, starting with the Durand-Kerner (DK)
 method:
 %%\begin{center}
 \begin{equation}
- Z_i^{k+1}=Z_{i}^k-\frac{P(Z_i^k)}{\prod_{i\neq j}(Z_i^k-Z_j^k)}
+\label{DK}
+ DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
 \end{equation}
 %%\end{center}
-where $Z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
+where $z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
 iteration $k$.
 
 
@@ -161,16 +162,17 @@ Docev~\cite{Docev62}, Durand~\cite{Durand60},
 Kerner~\cite{Kerner66}. Another method discovered by
 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
 in the following form by Ehrlich~\cite{Ehrlich67} and
-Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
+Aberth~\cite{Aberth73} uses a different iteration formula given as:
 %%\begin{center}
 \begin{equation}
- Z_i^{k+1}=Z_i^k-\frac{1}{{\frac {P'(Z_i^k)} {P(Z_i^k)}}-{\sum_{i\neq j}(Z_i^k-Z_j^k)}}.
+\label{Eq:EA}
+ EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
 \end{equation}
 %%\end{center}
-where $P'(Z)$ is the polynomial derivative of $P$ evaluated in the
-point $Z$.
+where $P'(z)$ is the polynomial derivative of $P$ evaluated in the
+point $z$.
 
-Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
+Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
 
 
@@ -181,75 +183,83 @@ drastically increases like the degrees of high polynomials. It is expected that
 parallelization of these algorithms will improve the convergence
 time.
 
-Many authors have dealt with the parallelisation of
+Many authors have dealt with the parallelization of
 simultaneous methods, i.e. that find all the zeros simultaneously. 
-Freeman~\cite{Freeman89} implemeted and compared DK, EA and another method of the fourth order proposed
-by Farmer and Loizou~\cite{Loizon83}, on a 8- processor linear
+Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
+by Farmer and Loizou~\cite{Loizou83}, on a 8-processor linear
 chain, for polynomials of degree up to 8. The third method often
-diverges, but the first two methods have speed-up 5.5
-(speed-up=(Time on one processor)/(Time on p processors)). Later,
+diverges, but the first two methods have speed-up equal to 5.5. Later,
 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
 algorithms, in which each processor continues to update its
 approximations even though the latest values of other $z_i((k))$
 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
-Couturier et al. ~\cite{Raphaelall01} proposed two methods of parallelisation for
+Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
 a shared memory architecture and for distributed memory one. They were able to
-compute the roots of polynomials of degree 10000 in 430 seconds with only 8
+compute the roots of sparse polynomials of degree 10000 in 430 seconds with only 8
 personal computers and 2 communications per iteration. Comparing to the sequential implementation
-where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup, indeed.
+where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup.
 
-Very few works had been since this last work until the appearing of
+Very few works had been performed since this last work until the appearing of
 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
 parallel computing platform and a programming model invented by
-NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of
-of CPUs. However, CUDA adopts a totally new computing architecture to use the
+NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
 hardware resources provided by GPU in order to offer a stronger
 computing ability to the massive data computing.
 
 
-Ghidouche et al. ~\cite{Kahinall14} proposed an implementation of the
+Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
 Durand-Kerner method on GPU. Their main
-result showed that a parallel CUDA implementation is 10 times as fast as
-the sequential implementation on a single CPU for high degree
-polynomials of about 48000. To our knowledge, it is the first time such high degree polynomials are numerically solved.
-
-
-In this paper, we focus on the implementation of the Aberth method for
-high degree polynomials on GPU. The paper is organised as fellows. Initially, we recall the Aberth method in Section.\ref{sec1}. Improvements for the Aberth method are proposed in Section.\ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section.\ref{secStateofArt}.
-In Section.4 we propose a parallel implementation of the Aberth method on GPU and discuss it. Section 5 presents and investigates our implementation and experimental study results. Finally, Section 6 concludes this paper and gives some hints for future research directions in this topic.  
-
-\section{The Sequential Aberth method}
+result showed that a parallel CUDA implementation is about 10 times faster than
+the sequential implementation on a single CPU for  sparse
+polynomials of degree 48000. 
+
+
+In this paper, we focus on the implementation of the Ehrlich-Aberth
+method for high degree polynomials on GPU. We propose an adaptation of
+the exponential logarithm in order to be able to solve sparse and full
+polynomial of degree up to $1,000,000$. The paper is organized as
+follows. Initially, we recall the Ehrlich-Aberth method in
+Section~\ref{sec1}. Improvements for the Ehrlich-Aberth method are
+proposed in Section \ref{sec2}. Related work to the implementation of
+simultaneous methods using a parallel approach is presented in Section
+\ref{secStateofArt}.  In Section~\ref{sec5} we propose a parallel
+implementation of the Ehrlich-Aberth method on GPU and discuss
+it. Section~\ref{sec6} presents and investigates our implementation
+and experimental study results. Finally, Section~\ref{sec7} 6 concludes
+this paper and gives some hints for future research directions in this
+topic.
+
+\section{Ehrlich-Aberth method}
 \label{sec1}
 A cubically convergent iteration method for finding zeros of
-polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
-method is a purely algebraic derivation. To illustrate the
-derivation, we let $w_{i}(z)$ be the product of linear factors 
+polynomials was proposed by O. Aberth~\cite{Aberth73}. In the
+following we present the main stages of our implementation the Ehrlich-Aberth method.
+%The Aberth method is a purely algebraic derivation. 
+%To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
 
-\begin{equation}
-w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
-\end{equation}
+%\begin{equation}
+%w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
+%\end{equation}
 
-And let a rational function $R_{i}(z)$ be the correction term of the
-Weistrass method~\cite{Weierstrass03}
+%And let a rational function $R_{i}(z)$ be the correction term of the
+%Weistrass method~\cite{Weierstrass03}
 
-\begin{equation}
-R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
-\end{equation}
+%\begin{equation}
+%R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
+%\end{equation}
 
-Differentiating the rational function $R_{i}(z)$ and applying the
-Newton method, we have:
+%Differentiating the rational function $R_{i}(z)$ and applying the
+%Newton method, we have:
 
-\begin{equation}
-\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
-\end{equation}
+%\begin{equation}
+%\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
+%\end{equation}
+%where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
+%Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
 
-Substituting $x_{j}$ for z we obtain the Aberth iteration method.
-
-In the fellowing we present the main stages of the running of the Aberth method.
 
 \subsection{Polynomials Initialization}
-The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$
-:
+The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$:
 
 \begin{equation}
 \label{eq:SimplePolynome}
@@ -258,13 +268,13 @@ The initialization of a polynomial p(z) is done by setting each of the $n$ compl
 
 
 \subsection{Vector $z^{(0)}$ Initialization}
-
-Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
+\label{sec:vec_initialization}
+As for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
 The initial guess is very important since the number of steps needed by the iterative method to reach
 a given approximation strongly depends on it.
-In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
+In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
 equi-spaced points on a circle of center 0 and radius r, where r is
-an upper bound to the moduli of the zeros. Later, Bini et al.~\cite{Bini96}
+an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
 performed this choice by selecting complex numbers along different
 circles and relies on the result of~\cite{Ostrowski41}.
 
@@ -281,31 +291,35 @@ u_{i}=2.|a_{i}|^{\frac{1}{i}};
 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
 \end{equation}
 
-\subsection{Iterative Function $H_{i}$}
-The operator used by the Aberth method is corresponding to the
-following equation which will enable the convergence towards
-polynomial solutions, provided all the roots are distinct.
+\subsection{Iterative Function}
+%The operator used by the Aberth method is corresponding to the
+%following equation~\ref{Eq:EA} which will enable the convergence towards
+%polynomial solutions, provided all the roots are distinct.
+
+Here we give a second form of the iterative function used by Ehrlich-Aberth method: 
 
 \begin{equation}
-H_{i}(z)=z_{i}-\frac{1}{\frac{p^{'}(z_{i})}{p(z_{i})}-\sum_{j\neq
-i}{\frac{1}{z_{i}-z_{j}}}}
+\label{Eq:Hi}
+EA2: z^{k+1}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
 \end{equation}
-
+It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
+but we prefer the latter one because we can use it to improve the
+Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
+details are given in Section~\ref{sec2}.
 \subsection{Convergence Condition}
-The convergence condition determines the termination of the algorithm. It consists in stopping from running
-the iterative function $H_{i}(z)$ when the roots are sufficiently stable. We consider that the method
-converges sufficiently when :
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
-\forall i \in
-[1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
+\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
 \end{equation}
 
 
-\section{Improving the Ehrlich-Aberth Method}
+\section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
 \label{sec2}
-The Ehrlich-Aberth method implementation suffers of overflow problems. This
+With high degree polynomial, the Ehrlich-Aberth method implementation,
+as well as the Durand-Kerner implement, suffers from overflow problems. This
 situation occurs, for instance, in the case where a polynomial
 having positive coefficients and a large degree is computed at a
 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
@@ -325,43 +339,47 @@ propose to use the logarithm and the exponential of a complex in order to comput
 \begin{align}
 \label{defexpcomplex}
  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
-                                     & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex}
+                                     & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex1}
 \end{align}
 %%\end{equation}
 
 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
-Applying this solution for the Aberth method we obtain the
-iteration function with logarithm:
+Applying this solution for the Ehrlich-Aberth method we obtain the
+iteration function with exponential and logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
-H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
-p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
-\left(1-Q(z_{k})\right)\right),
+EA.EL: z^{k+1}=z_{i}^{k}-\exp \left(\ln \left(
+p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
+\left(1-Q(z^{k}_{i})\right)\right),
 \end{equation}
 
 where:
 
 \begin{equation}
 \label{Log_H1}
-Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
-\sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
+Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
+\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
 \end{equation}
 
-This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
-\begin{equation}
-\label{R}
-R = \exp( \log(DBL\_MAX) / (2*n) )
-\end{equation}
- where $DBL\_MAX$ stands for the maximum representable double value.
+This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as:
+\begin{verbatim}
+R = exp(log(DBL_MAX)/(2*n) );
+\end{verbatim} 
+
+%\begin{equation}
+
+%R = \exp( \log(DBL\_MAX) / (2*n) )
+%\end{equation}
+ where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
 
-\section{The implementation of simultaneous methods in a parallel computer}
+\section{Implementation of simultaneous methods in a parallel computer}
 \label{secStateofArt}   
 The main problem of simultaneous methods is that the necessary
 time needed for convergence is increased when we increase
-the degree of the polynomial. The parallelisation of these
+the degree of the polynomial. The parallelization of these
 algorithms is expected to improve the convergence time.
 Authors usually adopt one of the two following approaches to parallelize root
 finding algorithms. The first approach aims at reducing the total number of
@@ -373,9 +391,9 @@ in~\cite{Benall68,Jana06,Janall99,Riceall06}.
 
 There are many schemes for the simultaneous approximation of all roots of a given
 polynomial. Several works on different methods and issues of root
-finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
+finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
 them~\cite{Bini04}. These two methods have been extensively
-studied for parallelization due to their intrinsics, i.e. the
+studied for parallelization due to their intrinsics parallelism, i.e. the
 computations involved in both methods has some inherent
 parallelism that can be suitably exploited by SIMD machines.
 Moreover, they have fast rate of convergence (quadratic for the
@@ -394,231 +412,260 @@ Optoelectronic Transpose Interconnection System (OTIS).The
 algorithms are mapped on an OTIS-2D torus using N processors. This
 solution needs N processors to compute N roots, which is not
 practical for solving polynomials with large degrees.
-Until very recently, the literature doen not mention implementations able to compute the roots of
-large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work. 
+%Until very recently, the literature did not mention implementations
+%able to compute the roots of large degree polynomials (higher then
+%1000) and within small or at least tractable times.
+
+Finding polynomial roots rapidly and accurately is the main objective of our work. 
 With the advent of CUDA (Compute Unified Device
 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
 In~\cite{Kahinall14} we already proposed the first implementation
 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
 that a parallel CUDA implementation is 10 times as fast as the
 sequential implementation on a single CPU for high degree
-polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
-GPUs, which details are discussed in the sequel.
-
-
-\section {A CUDA parallel Ehrlich-Aberth method}
-In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
-for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
-
-\subsection{Background on the GPU architecture}
-A GPU is viewed as an accelerator for the data-parallel and
-intensive arithmetic computations. It draws its computing power
-from the parallel nature of its hardware and software
-architectures. A GPU is composed of hundreds of Streaming
-Processors (SPs) organized in several blocks called Streaming
-Multiprocessors (SMs). It also has a memory hierarchy. It has a
-private read-write local memory per SP, fast shared memory and
-read-only constant and texture caches per SM and a read-write
-global memory shared by all its SPs~\cite{NVIDIA10}.
-
-On a CPU equipped with a GPU, all the data-parallel and intensive
-functions of an application running on the CPU are off-loaded onto
-the GPU in order to accelerate their computations. A similar
-data-parallel function is executed on a GPU as a kernel by
-thousands or even millions of parallel threads, grouped together
-as a grid of thread blocks. Therefore, each SM of the GPU executes
-one or more thread blocks in SIMD fashion (Single  Instruction,
-Multiple Data) and in turn each SP of a GPU SM runs one or more
-threads within a block in SIMT fashion (Single Instruction,
-Multiple threads). Indeed at any given clock cycle, the threads
-execute the same instruction of a kernel, but each of them
-operates on different data.
- GPUs only work on data filled in their
-global memories and the final results of their kernel executions
-must be communicated to their CPUs. Hence, the data must be
-transferred in and out of the GPU. However, the speed of memory
-copy between the GPU and the CPU is slower than the memory
-bandwidths of the GPU memories and, thus, it dramatically affects
-the performances of GPU computations. Accordingly, it is necessary
-to limit as much as possible, data transfers between the GPU and its CPU during the
-computations.
-\subsection{Background on the CUDA Programming Model}
-
-The CUDA programming model is similar in style to a single program
-multiple-data (SPMD) software model. The GPU is viewed as a
-coprocessor that executes data-parallel kernel functions. CUDA
-provides three key abstractions, a hierarchy of thread groups,
-shared memories, and barrier synchronization. Threads have a three
-level hierarchy. A grid is a set of thread blocks that execute a
-kernel function. Each grid consists of blocks of threads. Each
-block is composed of hundreds of threads. Threads within one block
-can share data using shared memory and can be synchronized at a
-barrier. All threads within a block are executed concurrently on a
-multithreaded architecture.The programmer specifies the number of
-threads per block, and the number of blocks per grid. A thread in
-the CUDA programming language is much lighter weight than a thread
-in traditional operating systems. A thread in CUDA typically
-processes one data element at a time. The CUDA programming model
-has two shared read-write memory spaces, the shared memory space
-and the global memory space. The shared memory is local to a block
-and the global memory space is accessible by all blocks. CUDA also
-provides two read-only memory spaces, the constant space and the
-texture space, which reside in external DRAM, and are accessed via
-read-only caches.
-
-\subsection{ The implementation of Aberth method on GPU}
+polynomials of 48000.
+%In this paper we present a parallel implementation of Ehrlich-Aberth
+%method on GPUs for sparse and full polynomials with high degree (up
+%to $1,000,000$).
+
+
+%% \section {A CUDA parallel Ehrlich-Aberth method}
+%% In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
+%% for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
+
+%% \subsection{Background on the GPU architecture}
+%% A GPU is viewed as an accelerator for the data-parallel and
+%% intensive arithmetic computations. It draws its computing power
+%% from the parallel nature of its hardware and software
+%% architectures. A GPU is composed of hundreds of Streaming
+%% Processors (SPs) organized in several blocks called Streaming
+%% Multiprocessors (SMs). It also has a memory hierarchy. It has a
+%% private read-write local memory per SP, fast shared memory and
+%% read-only constant and texture caches per SM and a read-write
+%% global memory shared by all its SPs~\cite{NVIDIA10}.
+
+%% On a CPU equipped with a GPU, all the data-parallel and intensive
+%% functions of an application running on the CPU are off-loaded onto
+%% the GPU in order to accelerate their computations. A similar
+%% data-parallel function is executed on a GPU as a kernel by
+%% thousands or even millions of parallel threads, grouped together
+%% as a grid of thread blocks. Therefore, each SM of the GPU executes
+%% one or more thread blocks in SIMD fashion (Single  Instruction,
+%% Multiple Data) and in turn each SP of a GPU SM runs one or more
+%% threads within a block in SIMT fashion (Single Instruction,
+%% Multiple threads). Indeed at any given clock cycle, the threads
+%% execute the same instruction of a kernel, but each of them
+%% operates on different data.
+%%  GPUs only work on data filled in their
+%% global memories and the final results of their kernel executions
+%% must be communicated to their CPUs. Hence, the data must be
+%% transferred in and out of the GPU. However, the speed of memory
+%% copy between the GPU and the CPU is slower than the memory
+%% bandwidths of the GPU memories and, thus, it dramatically affects
+%% the performances of GPU computations. Accordingly, it is necessary
+%% to limit as much as possible, data transfers between the GPU and its CPU during the
+%% computations.
+%% \subsection{Background on the CUDA Programming Model}
+
+%% The CUDA programming model is similar in style to a single program
+%% multiple-data (SPMD) software model. The GPU is viewed as a
+%% coprocessor that executes data-parallel kernel functions. CUDA
+%% provides three key abstractions, a hierarchy of thread groups,
+%% shared memories, and barrier synchronization. Threads have a three
+%% level hierarchy. A grid is a set of thread blocks that execute a
+%% kernel function. Each grid consists of blocks of threads. Each
+%% block is composed of hundreds of threads. Threads within one block
+%% can share data using shared memory and can be synchronized at a
+%% barrier. All threads within a block are executed concurrently on a
+%% multithreaded architecture.The programmer specifies the number of
+%% threads per block, and the number of blocks per grid. A thread in
+%% the CUDA programming language is much lighter weight than a thread
+%% in traditional operating systems. A thread in CUDA typically
+%% processes one data element at a time. The CUDA programming model
+%% has two shared read-write memory spaces, the shared memory space
+%% and the global memory space. The shared memory is local to a block
+%% and the global memory space is accessible by all blocks. CUDA also
+%% provides two read-only memory spaces, the constant space and the
+%% texture space, which reside in external DRAM, and are accessed via
+%% read-only caches.
+
+\section{ Implementation of Ehrlich-Aberth method on GPU}
+\label{sec5}
 %%\subsection{A CUDA implementation of the Aberth's method }
 %%\subsection{A GPU implementation of the Aberth's method }
 
 
 
-\subsubsection{A sequential Aberth algorithm}
-The main steps of Aberth method are shown in Algorithm.~\ref{alg1-seq} :
-  
-\begin{algorithm}[H]
-\label{alg1-seq}
-%\LinesNumbered
-\caption{A sequential algorithm to find roots with the Aberth method}
-
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
-tolerance threshold),P(Polynomial to solve)}
-
-\KwOut {Z(The solution root's vector)}
+%% \subsection{Sequential Ehrlich-Aberth algorithm}
+%% The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
+%% %\LinesNumbered  
+%% \begin{algorithm}[H]
+%% \label{alg1-seq}
 
-\BlankLine
+%% \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
 
-Initialization of the coefficients of the polynomial to solve\;
-Initialization of the solution vector $Z^{0}$\;
+%% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
+%%   threshold), $P$ (Polynomial to solve),$Pu$ (the derivative of P) $\Delta z_{max}$ (maximum value
+%%   of stop condition), k (number of iteration), n (Polynomial's degrees)}
+%% \KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
 
-\While {$\Delta z_{max}\succ \epsilon$}{
- Let $\Delta z_{max}=0$\;
-\For{$j \gets 0 $ \KwTo $n$}{
-$ZPrec\left[j\right]=Z\left[j\right]$\;
-$Z\left[j\right]=H\left(j,Z\right)$\;
-}
+%% \BlankLine
 
-\For{$i \gets 0 $ \KwTo $n-1$}{
-$c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
-\If{$c\succ\Delta z_{max}$ }{
-$\Delta z_{max}$=c\;}
-}
-}
-\end{algorithm}
+%% Initialization of $P$\;
+%% Initialization of $Pu$\;
+%% Initialization of the solution vector $Z^{0}$\;
+%% $\Delta z_{max}=0$\;
+%%  k=0\;
 
-~\\ 
-In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
-There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
+%% \While {$\Delta z_{max} > \varepsilon$}{
+%%  Let $\Delta z_{max}=0$\;
+%% \For{$j \gets 0 $ \KwTo $n$}{
+%% $ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
 
-\begin{equation}
-H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
-\end{equation}
+%% $Z\left[j\right]=H\left(j, Z, P, Pu\right)$;//update Z with the iterative function.\
+%% }
+%% k=k+1\;
 
-With the Gauss-seidel iteration, we have:
-\begin{equation}
-\label{eq:Aberth-H-GS}
-H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}})}, i=1,...,n.
-\end{equation}
+%% \For{$i \gets 0 $ \KwTo $n-1$}{
+%% $c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
+%% \If{$c > \Delta z_{max}$ }{
+%% $\Delta z_{max}$=c\;}
+%% }
 
-Using Equation.~\ref{eq:Aberth-H-GS} for the update sub-step of $H(i,z^{k+1})$, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
+%% }
+%% \end{algorithm}
 
-The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
-Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
+%% ~\\ 
+%% In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
 
-\paragraph{The execution time}
-Let $T_{i}(n)$ be the time to compute one new root value at step 3, $T_{i}$ depends on the polynomial's degree $n$. When $n$ increase $T_{i}(n)$ increases too. We need $n.T_{i}(n)$ to compute all the new values in one iteration at step 3.
+\subsection{Parallel implementation with CUDA }
 
-Let $T_{j}$ be the time needed to check the convergence of one root value at the step 4, so we need $n.T_{j}$ to compute global convergence condition in each iteration at step 4.
+In order to implement the Ehrlich-Aberth method in CUDA, it is
+possible to use the Jacobi scheme or the Gauss Seidel one.  With the
+Jacobi iteration, at iteration $k+1$ we need all the previous values
+$z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
 
-Thus, the execution time for both steps 3 and 4 is:
 \begin{equation}
-T_{iter}=n(T_{i}(n)+T_{j})+O(n).
+EAJ: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{k}_{i}-z^{k}_{j}}}, i=1,...,n.
 \end{equation}
-Let $K$ be the number of iterations necessary to compute all the roots, so the total execution time $T$ can be given as:
 
+With the Gauss-Seidel iteration, we have:
 \begin{equation}
-\label{eq:T-global}
-T=\left[n\left(T_{i}(n)+T_{j}\right)+O(n)\right].K
+\label{eq:Aberth-H-GS}
+EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
 \end{equation}
-The execution time increases with the increasing of the polynomial degree, which justifies to parallelise these steps  in order to reduce the global execution time. In the following,  we explain how we did parrallelize these steps on a GPU architecture using the CUDA platform.
+%%Here a finiched my revision %%
+Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
+\textit{Z}, we expect the Gauss-Seidel iteration to converge more
+quickly because, just as any Jacobi algorithm (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
 
-\subsubsection{A Parallel implementation with CUDA }
-On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
-In the GPU, the schduler assigns the execution of this loop to a group of threads organised as a grid of blocks with block containing a number of threads. All threads within a block are executed concurrently in parallel. The instructions run on the GPU are grouped in special function called kernels. It's up to the programmer, to describe the execution context, that is the size of the Grid, the number of blocks and the number of threads per block upon the call of a given kernel, according to a special syntax defined by CUDA.
+%The $4^{th}$ step of the algorithm checks the convergence condition using Eq.~\ref{eq:Aberth-Conv-Cond}.
+%Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
 
-Let N be the number of threads executed in parallel,  Equation.~\ref{eq:T-global} becomes then : 
 
-\begin{equation}
-T=\left[\frac{n}{N}\left(T_{i}(n)+T_{j}\right)+O(n)\right].K.
-\end{equation}
 
-In theory, total execution time $T$ on GPU is speed up $N$ times as  $T$ on CPU. We will see at what extent this is true in the experimental study hereafter. 
-~\\
-~\\
-In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual ``C`` function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
+%On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
+%In the GPU, the scheduler assigns the execution of this loop to a
+%group of threads organised as a grid of blocks with block containing a
+%number of threads. All threads within a block are executed
+%concurrently in parallel. The instructions run on the GPU are grouped
+%in special function called kernels. With CUDA, a programmer must
+%describe the kernel execution context:  the size of the Grid, the number of blocks and the number of threads per block.
 
-Algorithm~\ref{alg2-cuda} shows a sketch of the Aberth algorithm usind CUDA.
+%In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
+
+Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth algorithm using CUDA.
 
 \begin{algorithm}[H]
 \label{alg2-cuda}
 %\LinesNumbered
-\caption{CUDA Algorithm to find roots with the Aberth method}
+\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
-tolerance threshold),P(Polynomial to solve)}
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
+  threshold), P(Polynomial to solve), Pu (the derivative of P), $n$ (Polynomial's degrees),$\Delta z_{max}$ (maximum value of stop condition)}
 
-\KwOut {Z(The solution root's vector)}
+\KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
 
 \BlankLine
 
-Initialization of the coeffcients of the polynomial to solve\;
+Initialization of the of P\;
+Initialization of the of Pu\;
 Initialization of the solution vector $Z^{0}$\;
-Allocate and copy initial data to the GPU global memory\;
-
-\While {$\Delta z_{max}\succ \epsilon$}{
+Allocate and copy initial data to the GPU global memory ($d\_Z,d\_ZPrec,d\_P,d\_Pu$)\;
+k=0\;
+\While {$\Delta z_{max} > \epsilon$}{
  Let $\Delta z_{max}=0$\;
-$ kernel\_save(d\_z^{k-1})$\;
-$ kernel\_update(d\_z^{k})$\;
-$kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
+$ kernel\_save(d\_ZPrec,d\_Z)$\;
+k=k+1\;
+$ kernel\_update(d\_Z,d\_P,d\_Pu)$\;
+$kernel\_testConverge(\Delta z_{max},d\_Z,d\_ZPrec)$\;
+
 }
+Copy results from GPU memory to CPU memory\;
 \end{algorithm}
 ~\\ 
 
-After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
+After the initialization step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
 
-The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. 
+The second kernel executes the iterative function $H$ and updates
+$d\_Z$, according to Algorithm~\ref{alg3-update}. We notice that the
+update kernel is called in two forms, separated with the value of
+\emph{R} which determines the radius beyond which we apply the
+exponential logarithm algorithm. 
 
 \begin{algorithm}[H]
 \label{alg3-update}
 %\LinesNumbered
-\caption{A global Algorithm for the iterative function}
+\caption{Kernel update}
 
-\eIf{$(\left|Z^{(k)}\right|<= R)$}{
-$kernel\_update(d\_z^{k})$\;}
+\eIf{$(\left|d\_Z\right|<= R)$}{
+$kernel\_update((d\_Z,d\_P,d\_Pu)$\;}
 {
-$kernel\_update\_Log(d\_z^{k})$\;
+$kernel\_update\_ExpoLog((d\_Z,d\_P,\_Pu))$\;
 }
 \end{algorithm}
 
-The first form executes formula \ref{eq:SimplePolynome} if the modulus of the current complex is less than the a certain value called the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (Eq.~\ref{deflncomplex},Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
+The first form executes formula the EA function Eq.~\ref{Eq:Hi} if the modulus
+of the current complex is less than the a certain value called the
+radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes the EA.EL
+function Eq.~\ref{Log_H2}
+(with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
 
 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
 
-The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
+The last kernel checks the convergence of the roots after each update
+of $Z^{(k)}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
+
+The kernel terminates its computations when all the roots have
+converged. It should be noticed that, as blocks of threads are
+scheduled automatically by the GPU, we have absolutely no control on
+the order of the blocks. Consequently, our algorithm is executed more
+or less in an asynchronous iteration model, where blocks of roots are
+updated in a non deterministic way. As the Durand-Kerner method has
+been proved to converge with asynchronous iterations, we think it is
+similar with the Ehrlich-Aberth method, but we did not try to prove
+this in that paper. Another consequence of that, is that several
+executions of our algorithm with the same polynomial do no give
+necessarily the same result (but roots have the same accuracy) and the
+same number of iterations (even if the variation is not very
+significant).
+
+
+
+
 
-The kernels terminate it computations when all the roots converge. Finally, the solution of the root finding problem is copied back from GPU global memory to CPU memory. We use the communication functions of CUDA for the memory allocation in the GPU \verb=(cudaMalloc())= and for data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
-or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
 %%HIER END MY REVISIONS (SIDER)
 \section{Experimental study}
-
-\subsection{Definition of the used polynomials }
-We study two categories of polynomials : the sparse polynomials and the full polynomials.
-\paragraph{A sparse polynomial}: is a polynomial for which only some coefficients are not null. We use in the following polonymial for which the roots are distributed on 2 distinct circles :
+\label{sec6}
+%\subsection{Definition of the used polynomials }
+We study two categories of polynomials: sparse polynomials and the full polynomials.\\
+{\it A sparse polynomial} is a polynomial for which only some
+coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
 \begin{equation}
        \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
-\end{equation}
-
-
-\paragraph{A full polynomial} is in contrast, a polynomial for which all the coefficients are not null. the second form used to obtain a full polynomial is:
+\end{equation}\noindent
+{\it A full polynomial} is, in contrast, a polynomial for which
+all the coefficients are not null. A full polynomial is defined by:
 %%\begin{equation}
        %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
 %%\end{equation}
@@ -626,111 +673,114 @@ We study two categories of polynomials : the sparse polynomials and the full pol
 \begin{equation}
      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
 \end{equation}
-With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
+%With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
 
-\subsection{The study condition} 
-The our experiences results concern two parameters which are
-the polynomial degree and the execution time of our program
-to converge on the solution. The polynomial degree allows us
-to validate that our algorithm is powerful with high degree
-polynomials. The execution time remains the
-element-key which justifies our work of parallelization.
-       For our tests we used a CPU Intel(R) Xeon(R) CPU
-E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
+%\subsection{The study condition} 
+%Two parameters are studied are
+%the polynomial degree and the execution time of our program
+%to converge on the solution. The polynomial degree allows us
+%to validate that our algorithm is powerful with high degree
+%polynomials. The execution time remains the
+%element-key which justifies our work of parallelization.
+For our tests, a CPU Intel(R) Xeon(R) CPU
+E5620@2.40GHz and a GPU K40 (with 6 Go of ram) is used. 
 
 
-\subsection{Comparative study}
-In this section, we discuss the performance Ehrlich-Aberth method  of root finding polynomials implemented on CPUs and on GPUs.
+%\subsection{Comparative study}
+%First, performances of the Ehrlich-Aberth method  of root finding polynomials
+%implemented on CPUs and on GPUs are studied.
 
-We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time, the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
+We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution times, the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
 
-All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
-\subsubsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
+All experimental results obtained from the simulations are made in
+double precision data, the convergence threshold of the methods is set
+to $10^{-7}$.
+%Since we were more interested in the comparison of the
+%performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
+%CPUs versus on GPUs.
+The initialization values of the vector solution
+of the methods are given in Section~\ref{sec:vec_initialization}.
 
+\subsection{Comparison of execution times of the Ehrlich-Aberth method
+  on a CPU with OpenMP (1 core and 4 cores) vs. on a Tesla GPU}
 
-\begin{figure}[H]
+
+
+\begin{figure}[htbp]
 \centering
-  \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
-\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
+  \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
+\caption{Comparison of execution times  of the Ehrlich-Aberth method
+  on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU}
 \label{fig:01}
 \end{figure}
-
-Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
-We report the execution times of the Ehrlich-Aberth method implemented on one core of the Quad-Core Xeon E5620 CPU and those of the same methods implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU. This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, % with 1,000,000 polynomials degrees GPU implementation not reach 2,300 s degrees. While CPU implementation need more than 10 hours.
-with an execution time under to 2500 s CPU implementation can resolve polynomials degrees of only 200,000 s, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU. Furthermore, we verify that the number of iterations is the same. This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
+%%Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
+In Figure~\ref{fig:01}, we report respectively the execution time of the Ehrlich-Aberth method implemented initially on one core of the Quad-Core Xeon E5620 CPU than on four cores of the same machine with \textit{OpenMP} platform and the execution time of the same method implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU (4 cores). This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU(4 cores) implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, with an execution time under to 2,500 s CPU (4 cores) implementation can resolve polynomials degrees of only 200,000, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU(4 cores). However the CPU(4 cores) implementation are almost 4 faster then his implementation on CPU (1 core). Furthermore, we verify that the number of iterations and the convergence precision is the same for the both CPU and GPU implementation. %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
  
+ %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
 
-
-\subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
+\subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
-For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
+For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50,000 and 10 different polynomials of size 500,000 degrees.
 
-\begin{figure}[H]
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
-\label{fig:01}
+\label{fig:02}
 \end{figure}
 
 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
 
-\subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
+\subsection{The impact of exp-log solution to compute very high degrees of  polynomial}
 
 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
-\begin{figure}[H]
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
-\label{fig:01}
+\label{fig:03}
 \end{figure}
 
-The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying log-exp solution and the execution time of the Ehrlich-Aberth algorithm without applying log-exp solution, with full and sparse polynomials degrees. We can see that the execution time for the both algorithms are the same while the full polynomials degrees are less than 4000 and full polynomials are less than 150,000. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving any polynomial sparse or full. In counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
+The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying exp.log solution and the execution time of the Ehrlich-Aberth algorithm without applying exp.log solution, with full and sparse polynomials degrees. We can see that the execution time for the both algorithms are the same while the full polynomials degrees are less than 4000 and full polynomials are less than 150,000. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving any polynomial sparse or full. In counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
 
 in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
 
 
-%\begin{figure}[H]
-\%centering
-  %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
-%\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
-%\label{fig:01}
-%\end{figure}
-
-%we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
 
-\subsubsection{A comparative study between Ehrlich-Aberth algorithm and Durand-kerner algorithm}
+\subsection{A comparative study between Ehrlich-Aberth algorithm and Durand-kerner algorithm}
 In this part, we are interesting to compare the simultaneous methods, Ehrlich-Aberth and Durand-Kerner in parallel computer using GPU. We took into account the execution time, the number of iteration and the polynomial's size. for the both sparse and full polynomials.  
 
-\begin{figure}[H]
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
 \caption{The execution time of Ehrlich-Aberth versus Durand-Kerner algorithm on GPU}
-\label{fig:01}
+\label{fig:04}
 \end{figure}
 
 This figure show the execution time of the both algorithm EA and DK with sparse polynomial degrees ranging from 1000 to 1000000. We can see that the Ehrlich-Aberth algorithm are faster than Durand-Kerner algorithm, with an average of 25 times as fast. Then, when degrees of polynomial exceed 500000 the execution time with EA is of the order 100 whereas DK passes in the order 1000. %with double precision not exceed $10^{-5}$.
 
-\begin{figure}[H]
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
 \caption{The iteration number of Ehrlich-Aberth versus Durand-Kerner algorithm}
-\label{fig:01}
+\label{fig:05}
 \end{figure}
 
-\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
+This figure show the evaluation of the number of iteration according to degree of polynomial from both EA and DK algorithms, we can see that the iteration number of DK is of order 100 while EA is of order 10. Indeed the computing of derivative of P (the polynomial to resolve) in the iterative function(Eq.~\ref{Eq:Hi}) executed by EA, offers him a possibility to converge more quickly. In counterpart the DK operator(Eq.~\ref{DK}) need low operation, consequently low execution time per iteration,but it need lot of iteration to converge.
 
-\begin{figure}[H]
-\centering
-  \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
-\caption{The execution time in seconds of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
-\label{fig:01}
-\end{figure}
 
+ \section{Conclusion and perspective}
+\label{sec7}
+In this paper we have presented the parallel implementation Ehrlich-Aberth method on GPU and on CPU (openMP) for the problem of finding roots polynomial. Moreover, we have improved the classical Ehrlich-Aberth method witch suffer of overflow problems, the exp.log solution applying to the iterative function to resolve high degree polynomial.
+
+Then, we have described the parallel implementation of the Ehrlich-Aberth algorithm on GPU. 
+We have performed some experiments on Ehrlich-Aberth algorithm in CPU and GPU from the both sparse and full polynomial. These experiments lead us to conclude that the iterative methods using data-parallel operations are more efficient on the GPU than on the CPU. Moreover, the experiment showed that Ehrlich-Aberth algorithm on GPU converge from the both sparse and full polynomials with precision of $10^{-7}$ and the execution time very faster than the CPU version. 
+The experiences showed that the improvement brought to Ehrlich-Aberth allows to resolve very large degree polynomial exceed 100,000.
+Finally, we have compared Ehrlich-Aberth algorithm to Durand-Kerner algorithm, we have conclude that Ehrlich-Aberth converges more quickly than Durand-Kerner in execution time, it is due in fact that Ehrlich-Aberth has cubic one convergence While Durand-Kerner is quadratic. In counterpart, the execution time per iteration are very low for Durand-Kerner algorithm compare to the Ehrlich-Aberth algorithm, consequently, it need lot of iterations to converge. We have to notice that Durand-Kerner does not converge for full polynomial which exceed 5000 degrees while Ehrlich-Aberth was able to solve full polynomial of degree 500,000.
 
+In future work, we plan to perform some experiments using several GPU with a cluster of GPU. So it is interesting to implement algorithms using at least two forms of parallelism on GPU and CPU.
 
 
-\section{Conclusion and perspective}
 
 \bibliography{mybibfile}