\end{equation}
The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
-vector $x$ such that
+vector $x$ such that :
\begin{center}
$x=g(x)$
\end{center}
where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
rewrite this fixed-point problem as a root-finding problem by
setting $f(x) = x-g(x)$ and likewise we can recast the
-root-finding problem into a fixed-point problem by setting
+root-finding problem into a fixed-point problem by setting :
\begin{center}
$g(x)= f(x)-x$.
\end{center}
method:
%%\begin{center}
\begin{equation}
- Z_i^{k+1}=Z_{i}^k-\frac{P(Z_i^k)}{\prod_{i\neq j}(Z_i^k-Z_j^k)}
+ z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})}, i = 1, . . . , n,
\end{equation}
%%\end{center}
-where $Z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
+where $z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
iteration $k$.
Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
%%\begin{center}
\begin{equation}
- Z_i^{k+1}=Z_i^k-\frac{1}{{\frac {P'(Z_i^k)} {P(Z_i^k)}}-{\sum_{i\neq j}(Z_i^k-Z_j^k)}}.
+\label{Eq:EA}
+ z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
\end{equation}
%%\end{center}
-where $P'(Z)$ is the polynomial derivative of $P$ evaluated in the
-point $Z$.
+where $P'(z)$ is the polynomial derivative of $P$ evaluated in the
+point $z$.
Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
algorithms, in which each processor continues to update its
approximations even though the latest values of other $z_i((k))$
have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
-Couturier et al. ~\cite{Raphaelall01} proposed two methods of parallelisation for
+Couturier and al~\cite{Raphaelall01} proposed two methods of parallelisation for
a shared memory architecture and for distributed memory one. They were able to
compute the roots of polynomials of degree 10000 in 430 seconds with only 8
personal computers and 2 communications per iteration. Comparing to the sequential implementation
Very few works had been since this last work until the appearing of
the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
parallel computing platform and a programming model invented by
-NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of
-of CPUs. However, CUDA adopts a totally new computing architecture to use the
+NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
hardware resources provided by GPU in order to offer a stronger
computing ability to the massive data computing.
-Ghidouche et al. ~\cite{Kahinall14} proposed an implementation of the
+Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
Durand-Kerner method on GPU. Their main
result showed that a parallel CUDA implementation is 10 times as fast as
the sequential implementation on a single CPU for high degree
polynomials of about 48000. To our knowledge, it is the first time such high degree polynomials are numerically solved.
-In this paper, we focus on the implementation of the Aberth method for
-high degree polynomials on GPU. The paper is organised as fellows. Initially, we recall the Aberth method in Section.\ref{sec1}. Improvements for the Aberth method are proposed in Section.\ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section.\ref{secStateofArt}.
-In Section.4 we propose a parallel implementation of the Aberth method on GPU and discuss it. Section 5 presents and investigates our implementation and experimental study results. Finally, Section 6 concludes this paper and gives some hints for future research directions in this topic.
+In this paper, we focus on the implementation of the Ehrlich-Aberth method for
+high degree polynomials on GPU. The paper is organized as fellows. Initially, we recall the Ehrlich-Aberth method in Section \ref{sec1}. Improvements for the Ehrlich-Aberth method are proposed in Section \ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section \ref{secStateofArt}.
+In Section \ref{sec5} we propose a parallel implementation of the Ehrlich-Aberth method on GPU and discuss it. Section \ref{sec6} presents and investigates our implementation and experimental study results. Finally, Section\ref{sec7} 6 concludes this paper and gives some hints for future research directions in this topic.
\section{The Sequential Aberth method}
\label{sec1}
A cubically convergent iteration method for finding zeros of
-polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
-method is a purely algebraic derivation. To illustrate the
-derivation, we let $w_{i}(z)$ be the product of linear factors
+polynomials was proposed by O. Aberth~\cite{Aberth73}. In the fellowing we present the main stages of the running of the Aberth method.
+%The Aberth method is a purely algebraic derivation.
+%To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors
-\begin{equation}
-w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
-\end{equation}
+%\begin{equation}
+%w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
+%\end{equation}
-And let a rational function $R_{i}(z)$ be the correction term of the
-Weistrass method~\cite{Weierstrass03}
-
-\begin{equation}
-R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
-\end{equation}
+%And let a rational function $R_{i}(z)$ be the correction term of the
+%Weistrass method~\cite{Weierstrass03}
-Differentiating the rational function $R_{i}(z)$ and applying the
-Newton method, we have:
+%\begin{equation}
+%R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
+%\end{equation}
-\begin{equation}
-\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
-\end{equation}
+%Differentiating the rational function $R_{i}(z)$ and applying the
+%Newton method, we have:
-Substituting $x_{j}$ for z we obtain the Aberth iteration method.
+%\begin{equation}
+%\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
+%\end{equation}
+%where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z
+%Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.%
-In the fellowing we present the main stages of the running of the Aberth method.
\subsection{Polynomials Initialization}
-The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$
-:
+The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$:
\begin{equation}
\label{eq:SimplePolynome}
a given approximation strongly depends on it.
In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
equi-spaced points on a circle of center 0 and radius r, where r is
-an upper bound to the moduli of the zeros. Later, Bini et al.~\cite{Bini96}
+an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
performed this choice by selecting complex numbers along different
circles and relies on the result of~\cite{Ostrowski41}.
v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
\end{equation}
-\subsection{Iterative Function $H_{i}$}
+\subsection{Iterative Function $H_{i}(z^{k})$}
The operator used by the Aberth method is corresponding to the
-following equation which will enable the convergence towards
+following equation~\ref{Eq:EA} which will enable the convergence towards
polynomial solutions, provided all the roots are distinct.
\begin{equation}
-H_{i}(z)=z_{i}-\frac{1}{\frac{p^{'}(z_{i})}{p(z_{i})}-\sum_{j\neq
-i}{\frac{1}{z_{i}-z_{j}}}}
+\label{Eq:Hi}
+H_{i}(z^{k+1})=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
\end{equation}
-
+we notice that the function iterative $H_{i}$ in Eq.~\ref{Eq:Hi} it the same those presented in Eq.~\ref{Eq:EA}, but we prefer used the last one seen the advantage of its use to improve the Aberth method. More detail in the section ~\ref{sec2}.
\subsection{Convergence Condition}
The convergence condition determines the termination of the algorithm. It consists in stopping from running
the iterative function $H_{i}(z)$ when the roots are sufficiently stable. We consider that the method
\begin{equation}
\label{eq:Aberth-Conv-Cond}
\forall i \in
-[1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
+[1,n];\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}<\xi
\end{equation}
Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
-Applying this solution for the Aberth method we obtain the
+Applying this solution for the Ehrlich-Aberth method we obtain the
iteration function with logarithm:
%%$$ \exp \bigl( \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
\begin{equation}
\label{Log_H2}
-H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
-p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
-\left(1-Q(z_{k})\right)\right),
+H_{i}(z^{k+1})=z_{i}^{k}-\exp \left(\ln \left(
+p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
+\left(1-Q(z^{k}_{i})\right)\right),
\end{equation}
where:
\begin{equation}
\label{Log_H1}
-Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
-\sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
+Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}^{i}))+\ln \left(
+\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
\end{equation}
-This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
-\begin{equation}
-\label{R}
-R = \exp( \log(DBL\_MAX) / (2*n) )
-\end{equation}
- where $DBL\_MAX$ stands for the maximum representable double value.
+This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as:
+\begin{verbatim}
+R = exp(log(DBL_MAX)/(2*n) );
+\end{verbatim}
+
+%\begin{equation}
+
+%R = \exp( \log(DBL\_MAX) / (2*n) )
+%\end{equation}
+ where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
\section{The implementation of simultaneous methods in a parallel computer}
\label{secStateofArt}
texture space, which reside in external DRAM, and are accessed via
read-only caches.
-\subsection{ The implementation of Aberth method on GPU}
+\section{ The implementation of Aberth method on GPU}
+\label{sec5}
%%\subsection{A CUDA implementation of the Aberth's method }
%%\subsection{A GPU implementation of the Aberth's method }
There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
\begin{equation}
-H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
+z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{k}_{i}-z^{k}_{j}}}, i=1,...,n.
\end{equation}
-With the Gauss-seidel iteration, we have:
+With the Gauss-Seidel iteration, we have:
\begin{equation}
\label{eq:Aberth-H-GS}
-H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}})}, i=1,...,n.
+z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
\end{equation}
-
+%%Here a finiched my revision %%
Using Equation.~\ref{eq:Aberth-H-GS} for the update sub-step of $H(i,z^{k+1})$, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
\label{eq:T-global}
T=\left[n\left(T_{i}(n)+T_{j}\right)+O(n)\right].K
\end{equation}
-The execution time increases with the increasing of the polynomial degree, which justifies to parallelise these steps in order to reduce the global execution time. In the following, we explain how we did parrallelize these steps on a GPU architecture using the CUDA platform.
+The execution time increases with the increasing of the polynomial degree, which justifies to parallelize these steps in order to reduce the global execution time. In the following, we explain how we did parallelize these steps on a GPU architecture using the CUDA platform.
\subsubsection{A Parallel implementation with CUDA }
On the CPU, both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=.
%%HIER END MY REVISIONS (SIDER)
\section{Experimental study}
-
+\label{sec6}
\subsection{Definition of the used polynomials }
We study two categories of polynomials : the sparse polynomials and the full polynomials.
\paragraph{A sparse polynomial}: is a polynomial for which only some coefficients are not null. We use in the following polonymial for which the roots are distributed on 2 distinct circles :
\section{Conclusion and perspective}
-
+\label{sec7}
\bibliography{mybibfile}
\end{document}