The figure 3, show a comparison between the execution time of the Ehrlisch-Aberth algorithm applying log-exp solution and the execution time of the Ehrlisch-Aberth algorithm without applying log-exp solution, with full polynomials degrees. We can see that the execution time for the both algorithms are the same while the polynomials degrees are less than 4500. After,we show clearly that the classical version of Ehrlisch-Aberth algorithm (without applying log.exp) stop to converge and can not solving polynomial exceed 4500, in counterpart, the new version of Ehrlisch-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
The figure 3, show a comparison between the execution time of the Ehrlisch-Aberth algorithm applying log-exp solution and the execution time of the Ehrlisch-Aberth algorithm without applying log-exp solution, with full polynomials degrees. We can see that the execution time for the both algorithms are the same while the polynomials degrees are less than 4500. After,we show clearly that the classical version of Ehrlisch-Aberth algorithm (without applying log.exp) stop to converge and can not solving polynomial exceed 4500, in counterpart, the new version of Ehrlisch-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.